Skip to main content
Log in

Clinical Pharmacokinetics of Cyclophosphamide

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Cyclosphosphamide is widely used for cancer chemotherapy and for immunosuppression. The parent compound is inactive in vitro and exerts its biological activities through metabolites generated by hepatic microsomal enzymes. The drug may be administered either parenterally or orally. Systemic availability after oral administration is greater than 75% at the low doses which have been studied. Cyclophosphamide is minimally protein bound but some of its metabolites are more than 60% protein bound.

A linear 2-compartment model for the disposition of the parent compound has been formulated, but characteristics of the kinetics of disposition of the active metabolites have been delayed by analytical difficulties. Parameters vary widely between patients. Vc for this polar compound ranges from 0.32 to 0.34L/kg. Vd ranges from 0.60 to 0.64L/kg. T½β ranges from 3 to 12 hours.

Modelling of the time course of specific cytotoxic metabolites (aldophosphamide, 4-hydroxycyclophosphamide and phosphoramide mustard) has not been systematically performed. When measured by various nonspecific techniques, the serum concentration of metabolites was found to be maximal about 2 hours after an intravenous dose and declined by only 25% during the next 6 hours. Mean t½ was 7.7 hours in 1 study. Alkylating metabolites have been measured in the cerebrospinal fluid, but only a small fraction crosses the blood brain barrier.

At least 80% of an administered dose of cyclophosphamide is eliminated by metabolism. Both cyclophosphamide and metabolites are principally excreted by the kidney. Renal clearance has been measured at 5 to 11 ml/min, suggesting extensive tubular resorption; up to 25% of the administered dose is excreted unchanged in the first 24 hours. Only 60% of radiolabet can be recovered in the urine over 24 to 48 hours. An additional 1 to 4% can be collected as expired CO2 or in the stool. Although elevated levels of metabolites have been described in patients with renal failure, a recent study did not demonstrate excess clinical toxicity in such patients. Unchanged cyclophosphamide has been shown to be extensively cleared by haemodialysis (78ml/min).

Complex interactions are to be expected with agents modifying hepatic microsomal activation, and conflicting data have been obtained in several animal studies. No clear alteration of the effects of cyclophosphamide has been observed in patients after phenobarbitone administration. Synergistic haematopoietic toxicity may occur with concomitant use of allopurinol.

Dose related efficacy has been demonstrated in animal models. Human data are available on dose related toxicity. One study demonstrated a direct relationship between metabolite AUC and depth of white blood count nadir. Clinical correlation between kinetic data and efficacy and/or toxicity awaits studies evaluating the time course of specific cytotoxic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, D.S.; Peng, Y.M.; Chen, H.S. and Struck, R.F.: Effect of phenobarbital on plasma levels of cyclophosphamide and its metabolites in the mouse. British Journal of Cancer 38: 316–324 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Alberts, D.S. and van Daalen Wetters, T.: The effect of phenobarbital on cyclophosphamide antitumor activity. Cancer Research 36: 2785–2789 (1976a).

    PubMed  CAS  Google Scholar 

  • Alberts, D.S. and van Daalen Wetters, T.: The effect of allopurinol on cyclophosphamide antitumor activity. Cancer Research 36: 2790–2794 (1976b).

    PubMed  CAS  Google Scholar 

  • Allen, L.M. and Creaven, P.J.: In vitro activation of isophosphamide (NSC-109724), a new oxazaphosphorine, by rat liver microsomes. Cancer Chemotherapy Reports, Part 1, 56: 603–610 (1972).

    CAS  Google Scholar 

  • Bagley, C.M., Jr.; Bostick, F.W. and DeVita, V.T., Jr.: Clinical pharmacology of cyclophosphamide. Cancer Research 33: 226–233 (1973).

    PubMed  Google Scholar 

  • Bakke, J.E.; Feil, V.J.; Fjelstul, C.E. and Thacker, E.J.: Metabolism of cyclophosphamide in sheep. Journal of Agricultural and Food Chemistry 20: 384–388 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Bending, M.R. and Finch, R.E.: Haemodialysis during cyclophosphamide treatment. British Medical Journal 1: 1145–1146 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Bergsagel, D.E.; Robertson, G.L. and Hasselbach, R.: Effect of cyclophosphamide on advanced lung cancer and the hematological toxicity of large, intermittent doses. Canadian Medical Association Journal 98: 532–538 (1968).

    PubMed  CAS  Google Scholar 

  • Boston Collaborative Drug Surveillance Program. Allopurinol and cytotoxic drugs. Interaction and relation to bone marrow suppression. Journal of the American Medical Association 227: 1036–1040 (1974).

    Article  Google Scholar 

  • Brock, N.: Comparative pharmacologic study in vitro and in vivo with cyclophosphamide (NSC-26271), cyclophosphamide metabolites, and plain nitrogen mustard compounds. Cancer Treatment Reports 60: 301–308 (1976).

    PubMed  CAS  Google Scholar 

  • Brock, N.; Gross, R.; Hohorst, H.-J.; Klein, H.O. and Schneider, B.: Activation of cyclophosphamide in man and animals. Cancer 27: 1512–1529 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Brock, N. and Hohorst, H.-J.: Uber die aktivierung von cyclophosphamid in vivo und in vitro. Arzneimittel-Forschung 13: 1021–1031 (1963).

    PubMed  CAS  Google Scholar 

  • Buckner, C.D.; Rudolph, R.H.; Fefer, A.; Clift, R.A.; Epstein, R.B.; Funk, D.D.; Neiman, P.E.; Slichter, S.J.; Starb, R. and Thomas, E.D.: High dose cyclophosphamide therapy for malignant disease. Cancer 29: 357–365 (1972).

    Article  Google Scholar 

  • Bus, J.S.; Short, R.D. and Gibson, J.E.: Effect of phenobarbital and SKF-525A on the toxicity, elimination, and metabolism of cyclophosphamide in new born mice. Journal of Pharmacology and Experimental Therapeutics 184: 749–756 (1973).

    PubMed  CAS  Google Scholar 

  • Cohen, J.L. and Jao, J.Y.: Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. Journal of Pharmacology and Experimental Therapeutics 174: 206–210 (1970).

    PubMed  CAS  Google Scholar 

  • Cohen, J.L.; Jao, J.Y. and Jusko, W.J.: Pharmacokinetics of cyclophosphamide in man. British Journal of Pharmacology 43: 677–680 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Colvin, M.: A review of the pharmacology and clinical use of cyclophosphamide; in Pinedo (Ed) Clinical Pharmacology of Anti-Neoplastic Drugs, p. 245–261 (Elsevier/North-Holland Biomedical Press, Amsterdam 1978).

    Google Scholar 

  • Colvin, M.; Brundrett, R.B.; Kan, M.-N.N.; Jardine, I. and Fenselau, C.: Alkylating properties of phosphoramide mustard. Cancer Research 36: 1121–1126 (1976).

    PubMed  CAS  Google Scholar 

  • Colvin, M.; Padgett, C.A. and Fenselau, C.: A biologically active metabolite of cyclophosphamide. Cancer Research 33: 915–918 (1973).

    PubMed  CAS  Google Scholar 

  • Connors, T.A.; Cox, P.J.; Farmer, P.B.; Foster, A.B. and Jarman, M.: Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochemical Pharmacology 23: 115–129 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Creaven, P.J.; Allen, L.M.; Alford, D.A. and Cohen, M.H.: Clinical pharmacology of isophosphamide. Clinical Pharmacology and Therapeutics 16: 77–86 (1974).

    PubMed  CAS  Google Scholar 

  • DeFronzo, R.A.; Braine, H.; Colvin, M. and Davis, P.J.: Water intoxication in man after cyclophosphamide therapy. Time course and relationship to drug activation. Annals of Internal Medicine 78: 861–869 (1973).

    PubMed  CAS  Google Scholar 

  • D’Incalci, M.; Bolis, G.; Facchinetti, T.; Mangioni, C.; Morasca, L.; Morazzoni, P. and Salmona, M.: Decreased half life of cyclophosphamide in patients under continual treatment. European Journal of Cancer 19: 7–10 (1979).

    Google Scholar 

  • Donelli, M.G.; Vecchi, A.; Bossi, A.; Colombo, T.; Sironi, M.; Pantarotto, C.; Garattini, S. and Spreafico, F.: Effect of phenobarbital on cyclophosphamide cytotoxic activity and pharmacokinetics in mice. Tumori 63: 137–146 (1977).

    PubMed  CAS  Google Scholar 

  • Facchinetti, T.; D’Incalci, M.; Martelli, G.; Cantoni, L.; Belvedere, G. and Salmona, M.: A simple and sensitive method for the determination of cyclophosphamide by means of a nitrogen phosphorus selective detector (NPSD). Journal of Chromatography 145: 315–318 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Feil, V.J. and Lamoureux, C.J.H.: Alopecia activity of cyclophosphamide metabolites and related compounds in sheep. Cancer Research 34: 2596–2598 (1974).

    PubMed  CAS  Google Scholar 

  • Fenselau, C.; Kan, M.-N.N.; Subba Rao, S.; Myles, A.; Friedman, O.M. and Colvin, M.: Identification of aldophosphamide as a metabolite of cyclophosphamide in vitro and in vivo in humans. Cancer Research 37: 2538–2543 (1977).

    PubMed  CAS  Google Scholar 

  • Field, R.B.; Gang, M.; Kline, I.; Venditti, J.M. and Waravdekar, V.S.: The effect of phenobarbital or 2-diethylaminoethyl-2,2-diphenylvalerate on the activation of cyclophosphamide in vivo. Journal of Pharmacology and Experimental Therapeutics 180: 475–483 (1972).

    PubMed  CAS  Google Scholar 

  • Friedman, O.M. and Boger, E.: Colorimetric estimation of nitrogen mustards in aqueous media. Analytical Chemistry 33: 906–910 (1961).

    Article  CAS  Google Scholar 

  • Friedman, C.M.; Myles, A. and Colvin, M.: Cyclophosphamide and related phosphoramide mustards: current status and future prospects; in Rosowsky (Ed) Advances in Cancer Chemotherapy, Vol. 1 (Marcel Dekker, New York, in press 1979).

    Google Scholar 

  • Grochow, L.B.; Humphrey, R.L. and Colvin, M.: The influence of renal insufficiency on cyclophosphamide induced hematopoietic depression and recovery. In preparation (1979).

  • Hill, D.L.: A Review of Cyclophosphamide (Charles C. Thomas, Springfield, Illinois 1975).

    Google Scholar 

  • Hohorst, H.-J.; Draeger, U.; Voelcker, G. and Brock, N.: Metabolic activation and inactivation of cyclophosphamide as the cause of its oncostatic activity; in Becalossi, Veronesi and Cascinelli (Eds) Proceedings of the 11th Cancer Congress, Florence, Italy, Vol. 4. p. 729 (Excerpta Medica, Amsterdam 1975).

    Google Scholar 

  • Humphrey, R.L. and Kvols, L.K.: The influence of renal insufficiency on cyclophosphamide induced hematopoietic depression and recovery. Proceedings of the American Association of Cancer Research 15: 84 (1974).

    Google Scholar 

  • Jao, J.Y.; Jusko, W.J. and Cohen, J.L.: Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Research 32: 2761–2764 (1972).

    PubMed  CAS  Google Scholar 

  • Jardine, I.; Fenselau, C.; Appier, M.; Kan, M.-N.; Brundrett, R.B. and Colvin, M.: Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy. Cancer Research 38: 408–415 (1978).

    PubMed  CAS  Google Scholar 

  • Juma, F.D.; Rogers, H.J. and Trounce, J.R.: Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. British Journal of Clinical Pharmacology, in press (1979).

  • Mellett, L.B.: Chemistry and metabolism of cyclophosphamide; in Vancil (Ed) Immunosuppressive Properties of Cyclophosphamide, pp.6–34 (Mead Johnson & Company, Evansville, Indiana 1971).

    Google Scholar 

  • Mellett, L.B.; El Dareer, S.M.; Rall, D.P. and Adamson, R.H.: Metabolism of cyclophosphamide-C14 by various marine species. Archives Internationales de Pharmacodynamic et de Therapie 177: 59–70 (1969).

    Google Scholar 

  • Millar, J.L.; Phelps, T.A.; Carter, R.L. and McElwain, T.J.: Cyclophosphamide pretreatment reduces the toxic effect of high dose melphalan on intestinal epithelium in sheep. European Journal of Cancer 14: 1283–1285 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Milsted, R.A.V. and Jarman, M.: Haemodialysis during cyclophosphamide treatment. British Medical Journal 1: 820–821 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Mouridsen, H.T.; Faber, O. and Skovsted, L.: The biotransformation of cyclophosphamide in man: Analysis of the variation in normal subjects. Acta Pharmacologica et Toxicologica 35: 98–106 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Mouridsen, H.T.; Faber, O. and Skovsted, L.: The metabolism of cyclophosphamide. Dose dependency and the effect of long term treatment with cyclophosphamide. Cancer 37: 665–670 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Mouridsen, H.T. and Jacobsen, E.: Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacologica et Toxicologica 36: 409–414 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Mouridsen, H.T.; Witten, J.; Frederiksen, P.L. and Hulsbaek, I.: Studies on the correlation between rate of biotransformation and haematological toxicity of cyclophosphamide. Acta Pharmacologica et Toxicologica 43: 328–330 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Mullins, C.M. and Colvin, M.: Intensive cyclophosphamide (NSC-26271) therapy in solid tumors. Cancer Chemotherapy Reports 59: 411–419 (1975).

    CAS  Google Scholar 

  • Pantarotto, C.; Bossi, A.; Belvedere, G.; Martini, A.; Donelli, M.G. and Frigerio, A.: Quantitative GLC determination of cyclophosphamide and isophosphamide in biological specimens. Journal of Pharmaceutical Sciences 63: 1554–1558 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sensenbrenner, L.L.; Marini, J.J. and Colvin, M.: Comparative effects of cyclophosphamide, isophosphamide, 4-methyl-cyclophosphamide, and phosphoramide mustard on murine hematopoietic and immunocompetent cells. Journal of the National Cancer Institute 62: 975–981 (1979).

    PubMed  CAS  Google Scholar 

  • Sladek, N.E.: Metabolism of cyclophosphamide by rat hepatic microsomes. Cancer Research 31: 901–908 (1971).

    PubMed  CAS  Google Scholar 

  • Sladek, N.E.: Therapeutic efficacy of cyclophosphamide as a function of its metabolism. Cancer Research 32: 535–542 (1972).

    PubMed  CAS  Google Scholar 

  • Sladek, N.E.: Bioassay and relative cytotoxic potency of cyclophosphamide metabolites generated in vitro and in vivo. Cancer Research 33: 1150–1158 (1973).

    PubMed  CAS  Google Scholar 

  • Slavin, R.E.; Millan, J.C. and Mullins, G.M.: Pathology of high dose intermittent cyclophosphamide therapy. Human Pathology 6: 693–709 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Struck, R.F.; Kirk, M.C.; Mellett, L.B.; El Dareer, S. and Hill, D.L.: Urinary metabolites of the antitumor agent cyclophosphamide. Molecular Pharmacology 7: 519–529 (1971).

    PubMed  CAS  Google Scholar 

  • Struck, R.F.; Kirk, M.C.; Witt, M.H. and Laster, W.R., Jr.: Isolation and mass spectral identification of blood metabolites of cyclophosphamide: Evidence for phosphoramide mustard as the biologically active metabolite. Biomedical Mass Spectrometry 2: 46–52 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, A.; Matsumoto, S.; Iwata, T.; Katagiri, K.; Tochino, Y. and Yamaguchi, K.: Studies on cyclophosphamide metabolites and their compounds. II. Preparation of an active species of cyclophosphamide and some related compounds. J. Amer. Chem. Soc. 95: 985–986 (1973).

    Article  CAS  Google Scholar 

  • Voelcker, G.; Wagner, T. and Hohorst, H.-J.: Identification and pharmacokinetics of cyclophosphamide (NSC-26271) metabolites in vivo. Cancer Treatment Reports 60: 415–422 (1976).

    PubMed  CAS  Google Scholar 

  • Wagner, T.; Peter, G.; Voelcker, G. and Hohorst, H.-J.: Characterization and quantitative estimation of activated cyclophosphamide in blood and urine. Cancer Research 37: 2592–2596 (1977).

    PubMed  CAS  Google Scholar 

  • Weaver, F.A.; Torkelson, A.R.; Zygmunt, W.A. and Browder, H.P.: Tissue culture cytotoxicity assay for cyclophosphamide metabolites in rat body fluids. Journal of Pharmaceutical Sciences 67: 1009–1012 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Whiting, B.; Miller, S.H.K. and Caddy, B.: A procedure for monitoring cyclophosphamide and isophosphamide in biological samples. British Journal of Clinical Pharmacology 6: 373–376 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grochow, L.B., Colvin, M. Clinical Pharmacokinetics of Cyclophosphamide. Clin Pharmacokinet 4, 380–394 (1979). https://doi.org/10.2165/00003088-197904050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-197904050-00004

Keywords

Navigation