Skip to main content
Log in

Dysglycaemias and Fluoroquinolones

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The fluoroquinolones are an extremely popular class of antibacterials, owing to their broad spectrum of activity and the convenience of their intravenous and oral dosage formulations. Overall, the currently available fluoroquinolones have a good safety profile; however, certain fluoroquinolones within the class have been associated with severe and life-threatening adverse drug reactions. Dysglycaemic episodes (hyperglycaemia and hypoglycaemia) have been observed in patients taking multiple antibacterials, including the fluoroquinolones. Although gatifloxacin has been associated with dysglycaemias more frequently than other fluoroquinolones, dysglycaemic events have been reported with some of the other currently available fluoroquinolones as well. Hypoglycaemia appears to be related to insulin release and is an early-onset event. However, hyperglycaemia tends to present several days into therapy and the exact mechanism by which it is caused is still unclear. Recent studies point towards the important role of the adenosine triphosphate (ATP)-sensitive K+ channels in the pancreatic β cell and the importance of anti-insulin hormones. Several retrospective studies have elucidated risk factors associated with fluoroquinolone exposure and subsequent dysglycaemic events. These studies suggest that dysglycaemia is a dose-related adverse effect involving the fluoroquinolone class; however, some drugs within the class appear to have a greater association. This may be related to the affinity of fluoroquinolones to the ATP-sensitive K+ channel or higher concentrations of drugs achieved in certain patients who are already at risk for hyperglycaemia and hypoglycaemia. Understanding these risk factors will allow the fluoroquinolones to be utilized in a way that minimizes the probability of associated dysglycaemic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. Lesher GY, Froelich EJ, Gruett MD, et al. 1,8-Naphthyridine derivatives: a new class of chemotherapeutic agents. J Med Pharm Chem 1962 Sep; 91: 1063–5

    Article  PubMed  CAS  Google Scholar 

  2. Zhanel GG, Ennis K, Vercaigne L, et al. A critical review of the fluoroquinolones: focus on respiratory infections. Drugs 2002; 62(1): 13–59

    Article  PubMed  CAS  Google Scholar 

  3. Perry CM, Ormrod D, Hurst M, et al. Gatifloxacin: a review of its use in the management of bacterial infections. Drugs 2002; 62(1): 169–207

    Article  PubMed  CAS  Google Scholar 

  4. Menzies DJ, Dorsainvil PA, Cunha BA, et al. Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents. Am J Med 2002 Aug 15; 113(3): 232–4

    Article  PubMed  Google Scholar 

  5. Baker SE, Hangii MC. Possible gatifloxacin-induced hypoglycemia. Ann Pharmacother 2002 Nov; 36(11): 1722–6

    Article  PubMed  Google Scholar 

  6. Biggs WS. Hypoglycemia and hyperglycemia associated with gatifloxacin use in elderly patients. J Am Board Fam Pract 2003 Sep–Oct; 16(5): 455–7

    Article  PubMed  Google Scholar 

  7. Khovidhunkit W, Sunthornyothin S. Hypoglycemia, hyperglycemia, and gatifloxacin. Ann Intern Med 2004 Dec 21; 141(12): 969

    PubMed  Google Scholar 

  8. Frothingham R. Glucose homeostasis abnormalities associated with use of gatifloxacin. Clin Infect Dis 2005 Nov 1; 41(9): 1269–76

    Article  PubMed  CAS  Google Scholar 

  9. Blommel AL, Lutes RA. Severe hyperglycemia during renally adjusted gatifloxacin therapy. Ann Pharmacother 2005 Jul–Aug; 39(7–8): 1349–52

    PubMed  Google Scholar 

  10. Arce FC, Bhasin RS, Pasmantier R. Severe hyperglycemia during gatifloxacin therapy in patients without diabetes. Endocr Pract 2004 Jan–Feb; 10(1): 40–4

    PubMed  Google Scholar 

  11. Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther 2006 Nov; 28(11): 1857–66

    Article  PubMed  CAS  Google Scholar 

  12. Goyal V. Hypoglycaemic complication of the quinine. J Assoc Physicians India 2000 May; 48(5): 548–9

    PubMed  CAS  Google Scholar 

  13. Davis TM, Pukrittayakamee S, Supanaranond W, et al. Glucose metabolism in quinine-treated patients with uncomplicated falciparum malaria. Clin Endocrinol (Oxf) 1990 Dec; 33(6): 739–49

    Article  CAS  Google Scholar 

  14. Arya TV, Prasad RN, Bhandari S, et al. Spontaneous and quinine induced hypoglycaemia in severe falciparum malaria. Trop Geogr Med 1989 Jan; 41(1): 73–5

    PubMed  CAS  Google Scholar 

  15. White NJ, Warrell DA, Chanthavanich P, et al. Severe hypoglycemia and hyperinsulinemia in falciparum malaria. N Engl J Med 1983 Jul 14; 309(2): 61–6

    Article  PubMed  CAS  Google Scholar 

  16. Bokvist K, Rorsman P, Smith PA. Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells. J Physiol 1990 Apr; 423: 311–25

    PubMed  CAS  Google Scholar 

  17. Bokvist K, Rorsman P, Smith PA. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J Physiol 1990 Apr; 423: 327–42

    PubMed  CAS  Google Scholar 

  18. Petit P, Loubatieres-Mariani MM. Potassium channels of the insulin-secreting B cell. Fundam Clin Pharmacol 1992; 6(3): 123–34

    Article  PubMed  CAS  Google Scholar 

  19. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 2005 Aug; 115(8): 2047–58

    Article  PubMed  CAS  Google Scholar 

  20. MacDonald PE, Wheeler MB. Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 2003 Aug; 46(8): 1046–62

    Article  PubMed  CAS  Google Scholar 

  21. Maeda N, Tamagawa T, Niki I, et al. Increase in insulin release from rat pancreatic islets by quinolone antibiotics. Br J Pharmacol 1996 Jan; 117(2): 372–6

    Article  PubMed  CAS  Google Scholar 

  22. Cryer PE, Fisher JN, Shamoon H. Hypoglycemia. Diabetes Care 1994 Jul; 17(7): 734–55

    PubMed  CAS  Google Scholar 

  23. Kagansky N, Levy S, Rimon E, et al. Hypoglycemia as a predictor of mortality in hospitalized elderly patients. Arch Intern Med 2003 Aug 11–25; 163(15): 1825–9

    Article  PubMed  Google Scholar 

  24. Gaglia JL, Wyckoff J, Abrahamson MJ. Acute hyperglycemic crisis in the elderly. Med Clin North Am 2004 Jul; 88(4): 1063–84, xii

    Article  PubMed  Google Scholar 

  25. Lopes EP, Oliveira PM, Silva AE, et al. Exacerbation of type 2 diabetes mellitus during interferon-alfa therapy for chronic hepatitis B. Lancet 1994 Jan 22; 343(8891): 244

    Article  PubMed  CAS  Google Scholar 

  26. Cozzolongo R, Betterle C, Fabris P, et al. Onset of type 1 diabetes mellitus during peginterferon alpha-2b plus ribavirin treatment for chronic hepatitis C. Eur J Gastroenterol Hepatol 2006 Jun; 18(6): 689–92 292

    Article  PubMed  Google Scholar 

  27. Garbitelli VP. Tetracycline reduces the need for insulin. N Y State J Med 1987 Oct; 87(10): 576

    PubMed  CAS  Google Scholar 

  28. Basaria S, Braga M, Moore WT. Doxycycline-induced hypoglycemia in a nondiabetic young man. South Med J 2002 Nov; 95(11): 1353–4

    PubMed  Google Scholar 

  29. Strevel EL, Kuper A, Gold WL. Severe and protracted hypoglycaemia associated with co-trimoxazole use. Lancet Infect Dis 2006 Mar; 6(3): 178–82

    Article  PubMed  Google Scholar 

  30. Gribble FM, Davis TM, Higham CE, et al. The antimalarial agent mefloquine inhibits ATP-sensitive K-channels. Br J Pharmacol 2000 Oct; 131(4): 756–60

    Article  PubMed  CAS  Google Scholar 

  31. Bussing R, Gende A. Severe hypoglycemia from clarithromycin-sulfonylurea drug interaction. Diabetes Care 2002 Sep; 25(9): 1659–61

    Article  PubMed  Google Scholar 

  32. Zunkler BJ, Wos M. Effects of lomefloxacin and norfloxacin on pancreatic beta-cell ATP-sensitive K(+) channels. Life Sci 2003 Jun 13; 73(4): 429–35

    Article  PubMed  CAS  Google Scholar 

  33. Zunkler BJ, Claassen S, Wos-Maganga M, et al. Effects of fluoroquinolones on HERG channels and on pancreatic beta-cell ATP-sensitive K+ channels. Toxicology 2006 Dec 7; 228(2–3): 239–48

    Article  PubMed  Google Scholar 

  34. Saraya A, Yokokura M, Gonoi T, et al. Effects of fluoroquinolones on insulin secretion and beta-cell ATP-sensitive K+ channels. Eur J Pharmacol 2004 Aug 16; 497(1): 111–7

    Article  PubMed  CAS  Google Scholar 

  35. Yamada C, Nagashima K, Takahashi A, et al. Gatifloxacin acutely stimulates insulin secretion and chronically suppresses insulin biosynthesis. Eur J Pharmacol 2006 Dec 28; 553(1–3): 67–72

    Article  PubMed  CAS  Google Scholar 

  36. Ishiwata Y, Sanada Y, Yasuhara M. Effects of gatifloxacin on serum glucose concentration in normal and diabetic rats. Biol Pharm Bull 2006 Mar; 29(3): 527–31

    Article  PubMed  CAS  Google Scholar 

  37. Ishiwata Y, Itoga Y, Yasuhara M. Effect of levofloxacin on serum glucose concentration in rats. Eur J Pharmacol 2006 Dec 3; 551(1–3): 168–74

    Article  PubMed  CAS  Google Scholar 

  38. Hori S, Kizu J, Kawamura M. Effect of fluoroquinolones on plasma glucose levels in fasted and glucose-loaded mice. J Infect Chemother 2006 Apr; 12(2): 109–11

    Article  PubMed  CAS  Google Scholar 

  39. Coblio NA, Mowrey K, McCright P, et al. Use of a data warehouse to examine the effect of fluoroquinolones on glucose metabolism. Am J Health Syst Pharm 2004 Dec 1; 61(23): 2545–8

    PubMed  Google Scholar 

  40. Gajjar DA, LaCreta FP, Kollia GD, et al. Effect of multiple-dose gatifloxacin or ciprofloxacin on glucose homeostasis and insulin production in patients with noninsulin-dependent diabetes mellitus maintained with diet and exercise. Pharmacotherapy 2000 Jun; 20 (6 Pt 2): 76S–86S

    Article  PubMed  CAS  Google Scholar 

  41. Park-Wyllie LY, Juurlink DN, Kopp A, et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med 2006 Mar 30; 354(13): 1352–61

    Article  PubMed  CAS  Google Scholar 

  42. Cannon CP, Braunwald E, McCabe CH, et al. Antibiotic treatment of Chlamydia pneumoniaeafter acute coronary syndrome. N Engl J Med 2005 Apr 21; 352(16): 1646–54

    Article  PubMed  CAS  Google Scholar 

  43. Lomaestro BM, Lodise TP. Comparison of glucose intolerance between gatifloxacin and piperacillin-tazobactam in elderly hospitalized patients abstract]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC: 1093

  44. Graumlich JF, Habis S, Avelino RR, et al. Hypoglycaemia in inpatients after gatifloxacin or levofloxacin therapy: nested case-control study. Pharmacotherapy 2005 Oct; 25(10): 1296–302

    Article  PubMed  CAS  Google Scholar 

  45. Owens Jr RC, Ambrose PG. Torsades de pointes associated with fluoroquinolones. Pharmacotherapy 2002 May; 22(5): 663–8; discussion 8–72

    Article  PubMed  Google Scholar 

  46. Lodise T, Graves J, Miller C, et al. Effects of gatifloxacin and levofloxacin on rates of hypoglycemia and hyperglicemia among elderly hospitalized patients. Pharmacotherapy 2007 Nov; 27(11): 1498–505

    Article  PubMed  CAS  Google Scholar 

  47. Mohr JF, McKinnon PS, Peymann PJ, et al. A retrospective, comparative evaluation of dysglycemias in hospitalized patients receiving gatifloxacin, levofloxacin, ciprofloxacin, or ceftriaxone. Pharmacotherapy 2005 Oct; 25(10): 1303–9

    Article  PubMed  CAS  Google Scholar 

  48. Ambrose PG, Bhavnani SM, Cirincione BB, et al. Gatifloxacin and the elderly: pharmacokinetic-pharmacodynamic rationale for a potential age-related dose reduction. J Antimicrob Chemother 2003 Sep; 52(3): 435–40

    Article  PubMed  CAS  Google Scholar 

  49. Mohr J, Peymann P, Troxell E, et al. Risk factors for hyperglycemia in hospitalized adults receiving gatifloxacin: a retrospective, nested case controlled analysis. Clin Ther 2008; 30: 152–7

    Article  PubMed  CAS  Google Scholar 

  50. Friedrich LV, Dougherty R. Fatal hypoglycemia associated with levofloxacin. Pharmacotherapy 2004 Dec; 24(12): 1807–12

    Article  PubMed  Google Scholar 

  51. Lawrence KR, Adra M, Keir C. Hypoglycemia-induced anoxic brain injury possibly associated with levofloxacin. J Infect 2006 Jun; 52(6): e177–80

    Article  PubMed  Google Scholar 

  52. Wang S, Rizvi AA. Levofloxacin-induced hypoglycemia in a nondiabetic patient. Am J Med Sci 2006 Jun; 331(6): 334–5

    Article  PubMed  Google Scholar 

  53. Roberge RJ, Kaplan R, Frank R, et al. Glyburide-ciprofloxacin interaction with resistant hypoglycemia. Ann Emerg Med 2000 Aug; 36(2): 160–3

    Article  PubMed  CAS  Google Scholar 

  54. Lin G, Hays DP, Spillane L. Refractory hypoglycemia from ciprofloxacin and glyburide interaction. J Toxicol Clin Toxicol 2004; 42(3): 295–7

    Article  PubMed  Google Scholar 

  55. Gavin 3rd JR, Kubin R, et al. Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies. Drug Saf 2004; 27(9): 671–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review article. Dr Mohr has received grants and honoraria from Bristol Myers-Squibb and honoraria from Schering-Plough. Dr Lewis has no conflicts of interest that are directly relevant to the content of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Mohr III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R.J., Mohr, J.F. Dysglycaemias and Fluoroquinolones. Drug-Safety 31, 283–292 (2008). https://doi.org/10.2165/00002018-200831040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200831040-00002

Keywords

Navigation