Skip to main content

Advertisement

Log in

Patterns of environmental change associated withTypha xglauca invasion in a Great Lakes coastal wetland

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Typha x glauca (hybrid cattail) is an aggressive invader of wetlands in the upper Midwest, USA. There is widespread concern about declines in plant diversity followingTypha invasion. However, relatively little is known about howTypha alters habitat characteristics, i.e., its potential to act as an “ecosystem engineer”. Over five years, we measured physical, chemical, and plant community changes associated withTypha invasion in a Lake Huron wetland in northern lower Michigan. We compared uninvaded areas with patches varying in invasion intensity. Our study was observational, but we used statistical inference to try to separate effects ofTypha and confounding variables, particularly water depth. We used space-for-time substitution to investigate whetherTypha-associated changes increased over time, as predicted ifTypha invasion was in part a cause (not only a consequence) of abiotic changes. Relative to uninvaded areas,Typha-invaded areas differed in plant-community composition and had lower species richness, higher litter mass, and higher soil organic matter and nutrient concentrations (all P < 0.001). Overall,Typha invasion appeared to displace native species and enrich wetland soils. These changes could benefitTypha at the expense of native species, potentially generating plant-soil feedbacks that pose special challenges for wetland management and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Alvarez, J. A. and E. Becares. 2006. Seasonal decomposition ofTypha latifolia in a free-water surface constructed wetland. Ecological Engineering 28: 99–105.

    Article  Google Scholar 

  • Alvarez, M. E. and J. H. Cushman. 2002. Community-level consequences of a plant invasion: effects on three habitats in coastal California. Ecological Applications 12: 1434–44.

    Article  Google Scholar 

  • Angeloni, N. L., K. J. Jankowski, N. C. Tuchman, and J. J. Kelly. 2006. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiology Letters 263: 86–92.

    Article  CAS  PubMed  Google Scholar 

  • APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st edition. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.

    Google Scholar 

  • Boers, A. M., R. L. D. Veltman, and J. B. Zedler. 2007.Typha x glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecological Engineering 29: 232–44.

    Article  Google Scholar 

  • Bowles, M. and M. Jones. 2006. Trends of change in composition and structure of Chicago region wetland vegetation. Chicago Wilderness Journal 4: 25–34.

    Google Scholar 

  • Brooks, M. L., C. M. D’Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54: 677–88.

    Article  Google Scholar 

  • Callaway, R. M. and J. L. Maron. 2006. What have exotic plant invasions taught us over the past 20 years? Trends in Ecology & Evolution 21: 369–74.

    Article  Google Scholar 

  • Corbin, J. D. and C. M. D’Antonio. 2004. Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technology 18: 1464–67.

    Article  CAS  Google Scholar 

  • Craft, C., K. Krull, and S. Graham. 2007. Ecological indicators of nutrient enrichment, freshwater wetlands, Midwestern United States (US). Ecological Indicators 7: 733–50.

    Article  Google Scholar 

  • Dethier, M. N. and S. D. Hacker. 2005. Physical factors vs. biotic resistance in controlling the invasion of an estuarine marsh grass. Ecological Applications 15: 1273–83.

    Article  Google Scholar 

  • Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503–23.

    Article  CAS  Google Scholar 

  • Farrer, E. and D. Goldberg. 2009. Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications 19: 398–412.

    Article  PubMed  Google Scholar 

  • Findlay, S. E. G., S. Dye, and K. A. Kuehn. 2002. Microbial growth and nitrogen retention in litter ofPhragmites australis compared toTypha angustifolia. Wetlands 22: 616–25.

    Article  Google Scholar 

  • Freyman, M. J. 2008. The effect of litter accumulation of the invasive cattailTypha x glauca on a Great Lakes coastal marsh. Master’s Thesis. Loyola University Chicago, Chicago, IL, USA.

    Google Scholar 

  • Frieswyk, C. B., C. A. Johnston, and J. B. Zedler. 2007. Identifying and characterizing dominant plants as an indicator of community condition. Journal of Great Lakes Research 33: 125–35.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.

    Article  Google Scholar 

  • Green, E. K. and S. M. Galatowitsch. 2001. Differences in wetland plant community establishment with additions of nitrate-N and invasive species (Phalaris arundinacea andTypha x glauca). Canadian Journal of Botany 79: 170–78.

    Article  Google Scholar 

  • Hejda, M. and P. Pyšek. 2006. What is the impact ofImpatiens glandulifera on species diversity of invaded riparian vegetation? Biological Conservation 132: 143–52.

    Article  Google Scholar 

  • Henebry, M., J. Cairns, C. Schwintzer, and W. Yongue. 1981. A comparison of vascular vegetation and protozoan communities in some freshwater wetlands of Northern Lower Michigan. Hydrobiologia 83: 353–75.

    Article  Google Scholar 

  • Herr-Turoff, A. and J. B. Zedler. 2005. Does wet prairie vegetation retain more nitrogen with or withoutPhalaris arundinacea invasion? Plant and Soil 277: 19–34.

    Article  CAS  Google Scholar 

  • Jankowski, K. J. 2006. The effects of an invasive cattail (Typha x glauca) on nitrogen cycling in a Great Lakes coastal marsh. Master’s Thesis. Loyola University Chicago, Chicago, IL, USA.

    Google Scholar 

  • Kercher, S. M. and J. B. Zedler. 2004. Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia 138: 455–64.

    Article  PubMed  Google Scholar 

  • MacDougall, A. S. and R. Turkington. 2005. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86: 42–55.

    Article  Google Scholar 

  • McCune, B. and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR, USA.

    Google Scholar 

  • McDonald, M. E. 1955. Cause and effects of a die-off of emergent vegetation. Journal of Wildlife Management 19: 24–35.

    Article  Google Scholar 

  • Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. Soil Testing Div. Publ. 1-53. North Carolina Dept. Agriculture, Raleigh, NC, USA.

    Google Scholar 

  • NADP. 2007. National Atmospheric Deposition Program (NRSP-3). NADP Program Office, Illinois State Water Survey, Champaign, IL, USA.

    Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, R. O’Hara, M. Henry, and H. Stevens. 2006. Vegan: community ecology package. R package version 1.8-7 (http://cran.r-project.org/, http://vegan.r-forge.r-project.org/).

  • Pyšek, P. and A. Pyšek. 1995. Invasion byHeracleum mantegazzianum in different habitats in the Czech Republic. Journal of Vegetation Science 6: 711–18.

    Article  Google Scholar 

  • R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org).

    Google Scholar 

  • Reed, J. and B. Porter. 1988. National list of vascular plant species that occur in wetlands: National summary. Biological Report 88, U.S. Fish and Wildlife Service, St. Petersburg, FL, USA.

    Google Scholar 

  • Rothman, E. and V. Bouchard. 2007. Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland. Wetlands 27: 1134–43.

    Article  Google Scholar 

  • Smith, S. 1987.Typha: its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie 27: 129–38.

    Google Scholar 

  • Soil Conservation Service. 1991. Soil Survey of Cheboygan County, Michigan. USDA Soil Conservation Service, Washington, DC, USA.

    Google Scholar 

  • SPSS Inc. 2001. SPSS Base 11.0 for Windows User’s Guide. 1st edition. Prentice Hall., Upper Saddle River, NJ, USA.

    Google Scholar 

  • Suding, K. N., K. L. Gross, and G. R. Houseman. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution 19: 46–53.

    Article  Google Scholar 

  • terBraak, C. J. F. and P. Šmilauer. 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA.

    Google Scholar 

  • Tiner, R. W. 1991. The concept of a hydrophyte for wetland identification. Bioscience 41: 236–47.

    Article  Google Scholar 

  • US EPA. 2004. National Coastal Condition Report II. EPA-620/ R-03/002, Office of Research and Development/Office of Water, US Environmental Protection Agency, Washington, DC, USA.

    Google Scholar 

  • US EPA. 2007. STORET. United States Environmental Protection Agency, Washington, DC, USA (http://www.epa.gov/storet/).

    Google Scholar 

  • Vitousek, P. and L. Walker. 1989. Biological invasion byMyrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59: 247–65.

    Article  Google Scholar 

  • Windham, L. and L. A. Meyerson. 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26: 452–64.

    Article  Google Scholar 

  • Woo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasiveTypha x glauca? Wetlands 22: 509–21.

    Article  Google Scholar 

  • Yee, T. W. and N. D. Mitchell. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2: 587–602.

    Article  Google Scholar 

  • Zedler, J. B. and S. Kercher. 2004. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23: 431–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuchman, N.C., Larkin, D.J., Geddes, P. et al. Patterns of environmental change associated withTypha xglauca invasion in a Great Lakes coastal wetland. Wetlands 29, 964–975 (2009). https://doi.org/10.1672/08-71.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-71.1

Key Words

Navigation