Skip to main content
Log in

Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

A chronosequence of restiad peat bogs (dominated by Restionaceae) in the lowland warm temperate zone of the Waikato region, North Island, New Zealand, was sampled to identify the major environmental determinants of vegetation pattern and dynamics. Agglomerative hierarchical classification of vegetation data from 69 plots in nine different-aged bogs, initiated from c. 600 to c. 15,000 cal yr BP, identified eight groups. Six of these groups formed a sequence from sedges through Empodisma minus, the main peatforming restiad species, to phases dominated by a second restiad species, Sporadanthus ferrugineus. The sequence reflected bog age and paralleled patterns of temporal succession over the last 15,000 years (from early successional sedges through mid-successional Empodisma to late successional Sporadanthus) derived from previous studies of plant macrofossils and microfossils in peat cores. This indicated that different-aged bogs in the Waikato region could be used to interpret temporal succession. The remaining two classificatory groups comprised plots from sites modified by drainage, fire, or weed invasion and currently dominated by non-restiad species. The relationships between environmental variables and the six groups representing restiad bog succession indicated that, as succession proceeds, von Post decomposition index and nutrients in the top 7.5 cm peat zone decrease. The most useful indicators of successional stage were von Post, total P, total N, and % ash. Environmental response curves of the dominant plant species separated the species along nutrient and peat decompositional gradients, with early successional species having wider potential environmental ranges than late successional species. Empodisma minus, a mid-successional species, also had a relatively wide environmental range, which probably contributes to its key role in restiad bog development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Agnew, A. D. Q., G. L. Rapson, M. T. Sykes, and J. B. Wilson. 1993. The functional ecology of Empodisma minus (Hook. f.) Johnson and Cutler in New Zealand ombrotrophic mires. New Phytologist 124:703–710.

    Article  Google Scholar 

  • Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecological Modeling 157:101–118.

    Article  Google Scholar 

  • Belbin, L. 1995. PATN: Pattern analysis package. Technical reference. CSIRO Division of Wildlife and Ecology, Canberra, Australia.

    Google Scholar 

  • Blakemore, L. C., P. L. Searle and B. K. Daly. 1987. Methods for chemical analysis of soils. Department of Scientific and Industrial Research, Lower Hutt, New Zealand. New Zealand Soil Bureau Scientific Report 80.

    Google Scholar 

  • Bridgham, S. D., J. Pastor, J. A. Janssens, C. Chapin, and T. J. Malterer. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65.

    Google Scholar 

  • Bridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561.

    Article  Google Scholar 

  • Bridgham, S. D., K. Updegraff, and J. Pastor. 2001. A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands. Soil Science Society of America Journal 65:259–269.

    Article  CAS  Google Scholar 

  • Campbell, D. I. and J. L. Williamson. 1997. Evaporation from a raised peat bog. Journal of Hydrology 193:142–160.

    Article  Google Scholar 

  • Campbell, E. O. 1964. The restiad peat bogs at Motumaoho and Moanatuatua. Transactions of the Royal Society of New Zealand, Botany 2:219–227.

    Google Scholar 

  • Campbell, E. O., J. C. Heine, and W. A. Pullar. 1973. Identification of plants fragments and pollen from peat deposits in Rangitaiki Plains and Maketu Basins. New Zealand Journal of Botany 11: 317–330.

    Google Scholar 

  • Chapin, F. S. III, P. M. Vitousek, and K. van Cleve. 1986. The nature of nutrient limitation in plant communities. The American Naturalist 127:48–58.

    Article  Google Scholar 

  • Clarkson, B. R. 1997. Vegetation recovery following fire in two Waikato peatlands at Whangamarino and Moanatuatua. New Zealand Journal of Botany 35:167–179.

    Google Scholar 

  • Clarkson, B. R., K. Thompson, L. A. Schipper, and M. McLeod. 1999. Moanatuatua Bog—proposed restoration of a New Zealand restiad peat bog ecosystem. p. 127–137. In W. Streever (ed.) An International Perspective on Wetland Rehabilitation. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Google Scholar 

  • Clymo, R. S. 1983. Peat. p. 159–224. In A. J. P. Gore (ed.) Ecosystems of the World 4A Mires: Swamp, Bog, Fen and Moor. Elsevier Scientific Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Cole, C. A. 1999: Ecological theory and its role in the rehabilitation of wetlands. p. 265–275. In W. Streever (ed.) An International Perspective on Wetland Rehabilitation. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Google Scholar 

  • Cranwell, L. M. 1939. Native vegetation. New Zealand Department of Scientific and Industrial Research Bulletin 76:23–30.

    Google Scholar 

  • Cranwell, L. M. 1953. An outline of New Zealand peat deposits. Proceedings of the Seventh Pacific Science Congress 5:186–298.

    Google Scholar 

  • Damman, A. W. H. 1988. Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos 51:291–305.

    Article  Google Scholar 

  • de Lange, P. J. 1989. Late Quaternary development of the Kopuatai peat bog, Hauraki lowlands and some palaeoenvironmental inferences. M. Sc. Dissertation. University of Waikato. Hamilton, New Zealand.

    Google Scholar 

  • de Lange, P. R., P. B. Heenan, B. D. Clarkson, and B. R. Clarkson. 1999. Sporadanthus in New Zealand. New Zealand Journal of Botany 37:413–431.

    Google Scholar 

  • Dickinson, K. J. M., C. Chague-Goff, A. F. Mark, and L. Cullen. 2002. Ecological processes and trophic status of two low-alpine patterned mires, south-central South Island, New Zealand. Austral Ecology 27:369–384.

    Article  Google Scholar 

  • Dobson, A. T. 1979. Mire types of New Zealand. p. 82–95. In E. Kivinen, L. Heikurainen, and P. Pakarinen (eds.) Proceedings of the International Symposium on Classification of Peat and Peatlands. International Peat Society, Hyyttala, Finland.

    Google Scholar 

  • Faith, D. P., P. R. Minchin, and L. Belbin. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68.

    Article  Google Scholar 

  • Given, P. H. and C. H. Dickinson. 1975. Biochemistry and microbiology of peats. p. 123–212. In E. A. Paul and A. D. McLaren (eds.) Soil Biochemistry, Vol 3. Marcel Dekker. New York, NY. USA.

    Google Scholar 

  • Gore, A. J. P. (ed.). 1983. Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4A. Elsevier Scientific Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Grange, L. I., N. H. Taylor, C. F. Sutherland, J. K. Dixon, L. Hodgson, and F. T. Seelye. 1939. Soils. New Zealand Department of Scientific and Industrial Research Bulletin 76:30–63.

    Google Scholar 

  • Green, J. D. and D. J. Lowe. 1985. Stratigraphy and development of c. 17000 year old Lake Maratoto, North Island, New Zealand, with some inferences about postglacial climatic change. New Zealand Journal of Geology and Geophysics 28:675–699.

    Google Scholar 

  • Hastie T. J. and R. J. Tibishirani. 1990. Generalized Additive Models. Chapman and Hall. London, UK.

    Google Scholar 

  • Hogg, A. G., D. J. Lowe, and C. H. Hendy. 1987. University of Waikato radiocarbon dates I. Radiocarbon 29:263–301.

    CAS  Google Scholar 

  • Hughes, P. D. M. and K. E. Barber. 2003. Mire development across the fen-bog transition on the Teifi floodplain at Tregaron Bog. Ceredigion, Wales, and a comparison with 13 other raised bogs. Journal of Ecology 91:253–264.

    Article  Google Scholar 

  • Jackson, S. T., R. P. Futyma, and D. A. Wilcox. 1988. A paleoecological test of a classical hydrosere in the Lake Michigan dunes. Ecology 69:928–936.

    Article  Google Scholar 

  • Judd, W. S., C. S. Campbell, E. A. Kellogg, and P. F. Stevens. 1999. Plant Systematics: a Phylogenetic Approach. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Keddy, P. A. 2000. Wetland Ecology: Principles and Conservation. University Press, Cambridge, UK.

    Google Scholar 

  • Keeney, D. R. 1982. Nitrogen-availability indices. p. 711–735. In A. L. Page (ed.) Methods of Soil and Plant Analysis: Part 2. Chemical and Microbiological Properties, second edition. Soil Science Society of America. Madison, WI, USA.

    Google Scholar 

  • Kuder, T., M. A. Kruge, J. C. Shearer, and S. L. Miller. 1998. Environmental and botanical controls on peatification—a comparative study of two New Zealand restiad peat bogs using Py-GC/ MS, petrography and fungal analysis. International Journal of Coal Geology 37:3–27.

    Article  CAS  Google Scholar 

  • Leathwick, J. R., B. D. Clarkson, and P. T. Whaley. 1995. Vegetation of the Waikato Region: current and historical perspectives. Environment Waikato, Hamilton, New Zealand. Landeare Research Contract Report no. LC9596/022.

    Google Scholar 

  • Leathwick, J. R. and G. M. Rogers. 1996. Modeling relationships between environment and canopy composition in secondary vegetation in Central North Island, New Zealand. New Zealand Journal of Ecology 20:147–161.

    Google Scholar 

  • Lehmann, A., J. McC. Overton, and J. R. Leathwick. 2002. GRASP: Generalized Regression Analysis and Spatial Prediction. Ecological Modeling 157:187–205.

    Article  Google Scholar 

  • Lowe, D. J. and W. P. de Lange. 2000. Volcano-meteorological tsunamis, the c. AD 200 Taupo eruption (New Zealand) and the possibility of a global tsunami. The Holocene 10:401–407.

    Article  Google Scholar 

  • Lowe, D. J. and J. D. Green. 1992. Lakes. p. 107–143. In J. M. Soons and M. J. Selby (ed.) Landforms of New Zealand, second edition: Longman Paul, Auckland, New Zealand.

    Google Scholar 

  • Lowe, D. J., R. M. Newnham, and C. M. Ward. 1999. Stratigraphy and chronology of a 15 ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern North Island, New Zealand. New Zealand Journal of Geology and Geophysics 42:565–579.

    CAS  Google Scholar 

  • Malmer, N., C. Albinson, B. M. Svensson, and B. Wallen. 2003. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482.

    Article  Google Scholar 

  • McGlone, M. S. and N. W. Topping. 1977. Aranuian (post-glacial) pollen diagrams from the Tongariro region, North Island, New Zealand. New Zealand Journal of Botany 15:749–760.

    Google Scholar 

  • Meney, K. A. and J. S. Pate (eds.). 1999. Australian Rushes: Biology, Identification and Conservation of Restionaceae and Allied Families. University of Western Australia Press. Nedlands, Western Australia, Australia.

    Google Scholar 

  • Miles, J. 1979. Vegetation Dynamics. Chapman and Hall. London, UK.

    Google Scholar 

  • Minchin, P. R. 1987. An evaluation of the robustness of techniques for ecological ordination. Vegetatio 69:89–107.

    Article  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons. New York, NY, USA.

    Google Scholar 

  • Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • New Zealand Meteorological Service 1973. Summaries of climatological observations to 1970. New Zealand Meteorological Service miscellaneous publication 143.

  • Newnham, R. M., P. J. de Lange, and D. J. Lowe. 1995. Holocene vegetation, climate and history of a raised bog complex, northern New Zealand based on palynology, plant macrofossils and tephrochronology. The Holocene 5:267–282.

    Article  Google Scholar 

  • Pastor, J., B. Peckham, S. Bridgham, J. Weltzin, and J. Chen. 2002. Plant community dynamics, nutrient cycling, and alternative stable equilibria in peatlands. The American Naturalist 160:553–568.

    Article  PubMed  Google Scholar 

  • Schipper, L. A., B. R. Clarkson, M. Vojvodic-Vukovic, and R. Webster. 2002. Restoring cut-over peat bogs: a factorial experiment of nutrients, seeds and cultivation. Ecological Engineering 19:29–44.

    Article  Google Scholar 

  • Schipper, L. A., M. McLeod, B. R. Clarkson, M. Vojvodie-Vukovic, and M. Taylor. 1998. Gradients of microbial biomass, anaerobically mineralizable N and some physical properties in a restiad peat bog. International Peat Journal 8:71–75.

    Google Scholar 

  • Shearer, J. C. 1997. Natural and anthropogenic influences on peat development in Waikato/Hauraki Plains restiad bogs. Journal of the Royal Society of New Zealand 27:295–313.

    Article  Google Scholar 

  • Shearer, J. C. and B. R. Clarkson. 1998. Whangamarino Wetland: effects of lowered river levels on peat and vegetation. International Peat Journal 8:52–65.

    CAS  Google Scholar 

  • Sorrell, B. K., I. A. Mendelssohn, K. L. McKee, and R. A. Woods. 2000. Ecophysiology of wetland plant roots: a modeling comparison of acration in relation to species distribution. Annals of Botany 86:675–685.

    Article  Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht, and M. Spurk. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083.

    CAS  Google Scholar 

  • Tallis, J. H. 1983. Changes in wetland communities. p. 311–347. In A. J. P. Gore (ed.). Ecosystems of the World 4A Mires: Swamp, Bog, Fen and Moor. Elsevier Scientific Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Thompson, K. 1987. Annotated bibliography of New Zealand peat and peatlands. National Water and Soil Conservation Authority, Water and Soil Directorate. Ministry of Works and Development, Wellington, New Zealand. Water and Soil Miscellaneous Publications No. 114.

    Google Scholar 

  • Thompson, M. A., D. I. Campbell, and R. A. Spronken-Smith. 1999. Evaporation from natural and modified raised peat bogs in New Zealand. Agricultural and Forest Meteorology 95:85–98.

    Article  Google Scholar 

  • van Breemen, N. 1995. How Sphagnum bogs down other plants. Trends in Ecology & Evolution 10:270–275.

    Article  Google Scholar 

  • van der Valk, A. G. 1998. Succession theory and restoration of wetland vegetation. p. 657–667. In A. J. McComb and J. A. Davis (eds.) Wetlands for the Future. Gleneagles Publishing, Adelaide, Australia.

    Google Scholar 

  • Venables, W. N. and B. D. Ripley. 1994. Modern Applied Statistics with S-PLUS. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Verhoeven, J. T. A., W. Koerselmann, and A. F. Meuleman. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution 11:494–497.

    Article  Google Scholar 

  • Verhoeven, J. T. A. and W. M. Liefveld. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlanddica 46:117–130.

    CAS  Google Scholar 

  • Verhoeven, J. T. A., E. Maltby, and M. B. Schmitz. 1990. Nitrogen and phosphorus mineralization in fens and bogs. Journal of Ecology 78:713–726.

    Article  Google Scholar 

  • Vitt, D. H. and W-L. Chee. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106.

    Article  Google Scholar 

  • von Post, L. and E. Granlund. 1926. Sodra Sveriges torvtillganger I. Sveriges geologiska undersökning. Serie C. Avhandlingar och uppsatser 335:1–127.

    Google Scholar 

  • Wheeler, B. D. and M. C. F. Proctor. 2000. Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88:187–203.

    Article  Google Scholar 

  • Whinam, J., L. A. Barmuta, and N. Chilcott. 2001. Floristic description and environmental relationships of Tasmanian Sphagnum communities and their conservation management. Australian Journal of Botany 49:673–685.

    Article  Google Scholar 

  • Wilkinson, L. 1997. SYSTAT 7.0. SPSS. Chicago, IL, USA.

    Google Scholar 

  • Yee, T. W. and N. D. Mitchell. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2:587–602.

    Article  Google Scholar 

  • Zoltai, S. C. and D. H. Vitt. 1995. Canadian wetlands: environmental gradients and classification. Vegetatio 118:131–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, B.R., Schipper, L.A. & Lehmann, A. Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24, 133–151 (2004). https://doi.org/10.1672/0277-5212(2004)024[0133:VAPCIT]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0133:VAPCIT]2.0.CO;2

Key Words

Navigation