Skip to main content

Advertisement

Log in

Salt marsh restoration with sediment-slurry amendments following a drought-induced large-scale disturbance

Wetlands Aims and scope Submit manuscript

Abstract

Approximately 40,500 ha of Spartina-dominated marshes died during a drought-induced disturbance in Louisiana. This caused concern because in the absence of recovery, dieback marshes can subside, increasing the present high rates of wetland loss in coastal Louisiana. We assessed the recovery of one such dieback area after hydraulically dredged sediment-slurries were applied to the site to compensate for post-dieback soil consolidation. Five treatment-levels resulted from the sediment-slurry addition: 1) high elevation 2) medium elevation, 3) low elevation, 4) pop-up, and 5) vegetated. Plant recruitment within the five sediment treatment-levels were compared to two types of reference marshes: 1) ambient marshes, which neither died-back nor received sediment-enrichment, and 2) dieback marshes, which did not receive sediment addition. High and medium elevations had minimal recovery two years following the slurry addition, similar to that in reference dieback marshes. The low elevation, pop-up (highly organic sections of the original substrate that detached during slurry application and settled on top of the sediment-slurry), and vegetated (dieback areas that recovered by the start of the study) treatment-levels, all of which received sediment-slurry application, had rapid plant recovery. Plant recolonization was governed by optimal inundation, high organic matter content at high elevation, and rhizome survivability following sediment burial. If applied appropriately, sediment-slurry amendments can restore salt marshes submerging due to subsidence or other events, like sea-level rise, that may result in excessive plant submergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  • Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44: 445–56.

    Article  Google Scholar 

  • Allison, S. K. 1996. Recruitment and establishment of salt marsh plants following disturbance by flooding. The American Midland Naturalist 136: 232–48.

    Article  Google Scholar 

  • Barras, J., S. Beville, D. Britsch, S. Hartley, S. Hawes, J. Johnson, P. Kemp, Q. Kinler, A. Martucci, J. Porthouse, D. Reed, K. Roy, S. Sapkota, and J. Suhayda. 2004. Historical and projected coastal Louisiana land changes: 1978–2050. USGS Open File Report 03-334 (Revised 2004).

  • Base SAS 9.1 Procedures Guide2004. SAS Institute Inc., Cary, NC, USA.

  • Bertness, M., L. Gough, and S. W. Shumway. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–51.

    Article  Google Scholar 

  • Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England Salt Marsh. Ecology 72: 125–37.

    Article  Google Scholar 

  • Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72: 138–48.

    Article  Google Scholar 

  • Bertness, M. D. and S. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment of marsh elders. Ecology 75: 2416–29.

    Article  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8: 692–705.

    Article  Google Scholar 

  • Bradley, P. M. and E. L. Dunn. 1989. Effects of sulfide on the growth of three salt marsh halophytes of the Southeastern United States. American Journal of Botany 76: 1707–13.

    Article  CAS  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 71: 282–87.

    Article  CAS  Google Scholar 

  • Bremner, J. M. and D. R. Kenney. 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. exchangeable ammonium, nitrate, and nitrite by extractiondistillation methods. Soil Science Society of America Proceedings 30: 577–82.

    CAS  Google Scholar 

  • Brinson, M. M. and R. R. Christian. 1999. Stability of Juncus roemerianus patches in a salt marsh. Wetlands 19: 65–70.

    Article  Google Scholar 

  • Brinson, M. M., R. R. Christian, and L. K. Blum. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 11: 648–59.

    Article  Google Scholar 

  • Broome, S. W., E. D. Seneca, and W. W. Woodhouse Jr. 1988. Tidal salt marsh restoration. Aquatic Botany 32: 1–22.

    Article  Google Scholar 

  • Byrnside, D. S. and M. B. Sturgis. 1958. Soil phosphorus and its fractions as related to response of sugarcane to fertilizer phosphorus. Louisiana Agricultural Experimental Station Bulletin No. 513, Baton Rouge, LA, USA.

  • Callaway, J. C. 2005. The challenge of restoring functioning salt marsh ecosystems. Journal of Coastal Research Special Issue 40: 24–36.

    Google Scholar 

  • Cheramie, K., R. Francis, and K. Kilgen. 1995. Thin layer spoil deposition: an alternative restorative tool for coastal marshes. In Coastal Zone: Proceedings of the Symposium on Coastal Ocean Management. ASCE, Tampa, FL, USA.

    Google Scholar 

  • Cornu, C. E. and S. Sadro. 2002. Physical and functional responses to experimental marsh surface elevation manipulation in Coos Bay’s south slough. Restoration Ecology 10: 474–86.

    Article  Google Scholar 

  • Croft, A. L., L. A. Leonard, T. D. Alphin, L. B. Cahoon, and M. H. Posey. 2006. Effects of thin layer sand renourishment on tidal marsh processes: Masonboro Island, North Carolina. Estuaries and Coasts 29: 737–50.

    CAS  Google Scholar 

  • Day, J. W., W. H. Conner, R. Costanza, G. P. Kemp, and I. A. Mendelssohn. 1993. Impacts of sea level rise on coastal systems with special emphasis on the Mississippi River deltaic plain. p. 276–296. In R. A. Warrick, E. M. Barrow, and T. M. L. Wigley (eds.) Climate and Sea Level Change: Observations, Projections, and Implications. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Del Moral, R. and D. M. Wood. 1993. Early primary succession on a barren volcanic plain at Mount St. Helens, Washington. American Journal of Botany 80: 981–91.

    Article  Google Scholar 

  • DeLaune, R. D., R. H. Baumann, and J. G. Gosselink. 1983a. Relationships among vertical accretion, costal submergence and erosion in a Louisiana gulf coast marsh. Journal of Sedimentary Petrology 53: 147–57.

    Google Scholar 

  • DeLaune, R. D., R. J. Buresh, and W. H. Paterick, Jr. 1979. Relationship of soil properties to standing crop biomass of Spartina alterniflora in a Louisiana marsh. Estuarine and Coastal Marine Science 8: 477–87.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., J. A. Nyman, and W. H. Patrick, Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–30.

    Google Scholar 

  • DeLaune, R. D., S. R. Pezeshki, J. H. Pardue, J. H. Whitcomb, and W. H. Paterick, Jr. 1990. Some influences of sediment addition to a deteriorating salt marsh in the Mississippi River deltaic plain: a pilot study. Journal of Coastal Research 6: 181–88.

    Google Scholar 

  • DeLaune, R. D., C. J. Smith, and W. H. Patrick, Jr. 1983b. Relationship of marsh elevation, redox potential, and sulfide to Spartina alterniflora productivity. Journal of the Soil Science Society of America 47: 930–35.

    Article  CAS  Google Scholar 

  • DeLeeuw, J., A. Van Den Dool, W. DeMunck, J. Nieuwenhuize, and W. G. Beeftink. 1991. Factors influencing the soil salinity regime along an intertidal gradient. Estuarine, Coastal and Shelf Science 32: 87–97.

    Article  Google Scholar 

  • Edwards, K. R. and C. E. Proffitt. 2003. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA. Wetlands 23: 344–56.

    Article  Google Scholar 

  • Ford, M. A., D. R. Calhoon, and J. C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12: 189–205.

    Article  Google Scholar 

  • Foster, D. R., D. H. Knight, and J. F. Franklin. 1998. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems 1: 497–510.

    Article  Google Scholar 

  • Gambrell, R. P. 1994. Trace and toxic metals in wetlands—a review. Journal of Environmental Quality 23: 883–91.

    Article  CAS  Google Scholar 

  • Gambrell, R. P. and W. H. Patrick Jr. 1978. Chemical and microbiological properties of anaerobic soils and sediments. p. 375–423. In D. D. Hook and R. M. Crawford (eds.) Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Ann Arbor, MI, USA.

    Google Scholar 

  • Gutzerova, N. and T. Herben. 2001. Patch dynamics and local succession a sandstone area with frequent disturbance. Journal of Vegetation Science 12: 533–44.

    Article  Google Scholar 

  • Hacker, S. D. and M. D. Bertness. 1999. Experimental evidence for factors maintaining plant species diversity in a New England salt marsh. Ecology 80: 2064–73.

    Article  Google Scholar 

  • IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

    Google Scholar 

  • Koch, M. S. and I. A. Mendelssohn. 1989. Sulfide as a soil phytotoxin: differential responses in two marsh species. Journal of Ecology 77: 565–78.

    Article  CAS  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America 42: 421–428.

    CAS  Google Scholar 

  • Louisiana Department of Natural Resources. 2000. Closure report: initial funding allocation, DNR dedicated dredging program (LA-1). Louisiana Department of Natural Resources, Coastal Restoration Division, Engineering Section, Baton Rouge,UK. LA, USA.

    Google Scholar 

  • Materne, M., I. Mendelssohn, A. Schrift, A. Wilson, and S. Rohwer. 2006. Task V.5: factors controlling the restoration of brown marsh sites with small dredge sediment enrichment. Louisiana Department of Natural Resources, Baton Rouge, LA, USA.

    Google Scholar 

  • Matthews, S. D. 1984. Soil survey of Lafourche Parish, Louisiana. United States Department of Agriculture, Soil Conservation Service.

  • McKee, K. L., I. A. Mendelssohn, and M. D. Materne. 2004. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography 13: 65–73.

    Article  Google Scholar 

  • Mendelssohn, I. A. and N. L. Kuhn. 1999. The effects of sediment addition on salt marsh vegetation and soil physico-chemistry. p. 55–61. In L. P. Rozas, J. A. Nyman, C. E. Proffitt, N. N. Rabalais, D. J. Reed, and R. E. Turner (eds.) Recent Research in Coastal Louisiana: Natural System Function and Response to Human Influence. Louisiana Sea Grant College Program.

  • Mendelssohn, I. A. and N. L. Kuhn. 2003. Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering 21: 115–28.

    Article  Google Scholar 

  • Mendelssohn, I. A. and K. L. McKee. 1988. Spartina alterniflora die-back in Louisiana: time-course investigation of soil waterlogging effects. Journal of Ecology 76: 509–21.

    Article  Google Scholar 

  • Mendelssohn, I. A. and J. T. Morris. 2000. Eco-physiological constraints on the primary productivity of Spartina alterniflora. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Elsevier Press, Dordrecht, The Netherlands.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Morris, J. T. and J. W. H. Dacey. 1984. Effects of O2 on ammonium uptake and root respiration by Spartina alterniflora. American Journal of Botany 71: 979–85.

    Article  CAS  Google Scholar 

  • Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Neill, C. and R. E. Turner. 1987. Backfilling canals to mitigate wetland dredging in Louisiana coastal marshes. Environmental Management 11: 823–36.

    Article  Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961–1010. In J. M. Bartels and J. M. Bigham (eds.) Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Patterson, C. M., I. A. Mendelssohn, and E. M. Swenson. 1993. Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A. Journal of Coastal Research 9: 801–10.

    Google Scholar 

  • Penland, S. and K. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–42.

    Google Scholar 

  • Pennings, S. C. and C. L. Richards. 1998. Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic salt marsh. Ecography 21: 630–38.

    Article  Google Scholar 

  • Platt, W. J. and J. H. Connell. 2003. Natural disturbances and directional replacement of species. Ecological Monographs 73: 507–22.

    Article  Google Scholar 

  • Proffitt, C. E., S. E. Travis, and K. R. Edwards. 2003. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecological Applications 13: 180–92.

    Article  Google Scholar 

  • Reed, D. J. and D. R. Cahoon. 1992. The relationship between marsh surface topography, hydroperiod, and growth of Spartina alterniflora in a deteriorating Louisiana salt marsh. Journal of Coastal Research 8: 77–87.

    Google Scholar 

  • Sasser, C. E. 1977. Distribution of vegetation in Louisiana coastal marshes as response to tidal flooding. Louisiana State University, Baton Rouge, LA, USA.

    Google Scholar 

  • Shinkle, K. and R. K. Dokka. 2004. Rates of vertical displacement at benchmarks in the lower Mississippi Valley and the northern Gulf Coast. NOAA Technical Report 50, 135 p.

  • Shumway, S. W. and M. D. Bertness. 1994. Patch size effects on marsh plant secondary succession mechanisms. Ecology 75: 564–68.

    Article  Google Scholar 

  • Silvestri, S., A. Defina, and M. Marani. 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science 62: 119–30.

    Article  CAS  Google Scholar 

  • Slocum, M. G., I. A. Mendelssohn, and N. L. Kuhn. 2005. Effects of sediment slurry enrichment on salt marsh rehabilitation: plant and soil responses over seven years. Estuaries 28: 519–528.

    Article  CAS  Google Scholar 

  • Smart, M. R. and J. W. Barko. 1980. Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology 61: 630–38.

    Article  CAS  Google Scholar 

  • Thomas, G. W. 1982. Exchangeable cations. p. 159–65. In A. L. Page, R. H. Miller, and D. R. Keeney (eds.) Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Turner, M. G., S. L. Collins, A. L. Lugo, J. J. Magnuson, T. S. Rupp, and F. J. Swanson. 2003. Disturbance dynamics and ecological response: The contribution of long-term ecological research. BioScience 53: 46–56.

    Article  Google Scholar 

  • Turner, M. J. and V. H. Dale. 1998. Large, infrequent disturbances: comparing large, infrequent disturbances: what have we learned? Ecosystems 1: 493–96.

    Article  Google Scholar 

  • Turner, R. E. 1991. Tide gauge records, water level rise, and subsidence in the northern Gulf of Mexico. Estuaries 14: 139–47.

    Article  Google Scholar 

  • USDA and NRCS. 2004. Soil Survey Laboratory Investigations Manual. Soil Survey Investigation Report No. 42 Version 4.0, United States Department of Agriculture and Natural Resources Conservation Service, USA.

    Google Scholar 

  • Valiela, I., J. M. Teal, and W. J. Sass. 1975. Production and dynamics of salt marsh vegetation and the effects of experimental treatment with sewage sludge. Journal of Applied Ecology 12: 973–81.

    Article  CAS  Google Scholar 

  • Vandvik, V. 2004. Gap dynamics in perennial subalpine grasslands: trends and processes change during secondary succession. Journal of Ecology 92: 86–96.

    Article  Google Scholar 

  • Van Nieuwstadt, M. G. L. and D. Sheil. 2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology 93: 191–201.

    Article  Google Scholar 

  • Walker, L. R. and R. Del Moral. 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Wilsey, B. J., K. L. McKee, and I. A. Mendelssohn. 1992. Effects of increased elevation and macro- and micronutrient additions on Spartina alterniflora transplant success in salt-marsh dieback areas in Louisiana. Environmental Management 16: 505–11.

    Article  Google Scholar 

  • Wu, J. and S. A. Levin. 1994. A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecological Monographs 64: 447–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrift, A.M., Mendelssohn, I.A. & Materne, M.D. Salt marsh restoration with sediment-slurry amendments following a drought-induced large-scale disturbance. Wetlands 28, 1071–1085 (2008). https://doi.org/10.1672/07-78.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-78.1

Key Words

Navigation