Skip to main content

Advertisement

Log in

Dissolved oxygen requirements for hatching success of two ambystomatid salamanders in restored ephemeral ponds

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

To assess feasibility of reintroduction of extirpated spotted salamanders (Ambystoma maculatum) in restored flatwoods wetlands, hatching rates were monitored using pond enclosures.Ambystoma maculatum hatching success was compared to that of conspecifics in source ponds and to blue-spotted salamanders (Ambystoma laterale) that had persisted in restored ponds despite habitat degradation. Restored ephemeral ponds with hypoxic conditions had consistent hatching failure forA. maculatum. To isolate effects of dissolved oxygen (DO), laboratory gradients were used to identify levels of DO necessary forA. maculatum andA. laterale hatching success. DO treatments included 0, 2.0, 4.0, 5.0, 6.0, 7.0, and 8.0 mg/l forA. maculatum and 2.0, 4.0, and 6.0 mg/l forA. laterale. Ambystoma laterale hatched across all treatments.Ambystoma maculatum hatching was successful in treatments >4.0 mg/l. Prescribed burns of dried ponds and selective girdling reduced leaf litter and increasedin situ photosynthesis resulting in greater DO.Ambystoma laterale may have persisted in degraded ponds because of differences fromA. maculatum in egg structure, and thus oxygen delivery. Land use changes contributing to hypoxia, including changes in forest composition and fire regime, may help explain the loss ofA. maculatum from regional assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Atlas, M. 1938. The rate of oxygen consumption of frogs during embryonic development and growth. Physiological Zoology 11:278–91.

    CAS  Google Scholar 

  • Blaustein, A. R., P. D. Hoffman, D. G. Hokit, J. M. Kiesecker, S. C. Walls, and J. B. Hays. 1994. UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences 91:1791–95.

    Article  CAS  Google Scholar 

  • Branch, L. C. and R. Altig. 1983. Survival and behavior of four species ofAmbystoma larvae under hypoxic conditions. Comparative Biochemistry and Physiology 74a:395–97.

    Google Scholar 

  • Brooks, R. T. and M. Hayashi. 2002. Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 22:247–55.

    Article  Google Scholar 

  • Carlton, R. G. and R. G. Wetzel. 1987. Distributions and fates of oxygen in periphyton communities. Canadian Journal of Botany 65:1031–37.

    Article  CAS  Google Scholar 

  • Carroll, C., J. Ellis, G. Spyreas, and B. Molano-Flores. 2009. A finger on the pulse of Illinois forests- early results from the Critical Trends Assessment Program.In C. A. Taylor, J. B. Taft, and C. Warwick (eds.) Canaries in the Catbird Seat. Illinois Natural History Survey Special Publication #30.

  • Cech Jr, J. J., S. J. Mitchell, D. T. Castleberry, and M. McEnroe. 1990. Distribution of California stream fishes: influence of environmental temperature and hypoxia. Environmental Biology of Fishes 29:95–105.

    Article  Google Scholar 

  • Colburn, E. A. 2004. Vernal Pools: Natural History and Conservation. The MacDonald and Woodward Publishing Company, Blacksburg, VA, USA.

    Google Scholar 

  • Dahl, T. E. and G. J. Allord. 1990. History of wetlands in the conterminous United States. National Water Summary—Wetland Resources: Technical Aspects. United States Geological Survey, Water Supply Paper 2425.

  • DeMaynadier, P. G. and M. L. Hunter, Jr. 1999. Forest canopy closure and juvenile emigration by pool-breeding amphibians in Maine. Journal of Wildlife Management 63:441–50.

    Article  Google Scholar 

  • Egan, R. S. and P. W. C. Paton. 2004. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24:1–13.

    Article  Google Scholar 

  • Gibbons, J. W. 2003. Terrestrial habitat: a vital component for herpetofauna of isolated wetlands. Wetlands 23:630–35.

    Article  Google Scholar 

  • Gibbs, J. P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology 13:263–68.

    Article  Google Scholar 

  • Gilbert, P. W. 1942. Observations on the eggs ofAmbystoma maculatum with especial reference to the green algae found within the egg envelopes. Ecology 23:215–27.

    Article  Google Scholar 

  • Gilbert, P. W. 1944. The alga-egg relationship inAmbystoma maculatum, a case of symbiosis. Ecology 25:366–69.

    Article  Google Scholar 

  • Gutsell, J. S. 1929. Influence of certain water conditions, especially dissolved gasses on trout. Ecology 10:77–96.

    Article  Google Scholar 

  • Hill, W. R. and S. M. Dimick. 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilisation efficiency. Freshwater Biology 47:1245–56.

    Article  CAS  Google Scholar 

  • Hocking, D. and R. D. Semlitsch. 2007. Effects of timber harvest on breeding site selection by gray treefrogs (Hyla versicolor). Biological Conservation 138:506–13.

    Article  Google Scholar 

  • Hutchinson, V. H. and C. S. Hammen. 1958. Oxygen utilization in the symbiosis of embryos of the salamander,Ambystoma maculatum and the alga,Oophilia amblystomatis. The Biological Bulletin 115:438–89.

    Google Scholar 

  • Kiesecker, J. M. and A. R. Blaustein. 1995. Synergism between UV-B radiation and a pathogen magnifies amphibian embryo mortality in nature. Proceedings of the National Academy of Sciences 92:11049–52.

    Article  CAS  Google Scholar 

  • Kiesecker, J. M., A. R. Blaustein, and L. K. Belden. 2001. Complex causes of amphibian population declines. Nature 410:686–84.

    Article  Google Scholar 

  • Klick, K. 2002. MacArthur Woods Forest Preserves’ wooded wetland habitat restoration project. Written programmatic report. Lake County Forest Preserve District, Planning Office, Lake County, IL, USA. Project number 01-21-00-04.

    Google Scholar 

  • King, J. L., M. A. Simovich, and R. C. Brusca. 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328:85–116.

    Article  Google Scholar 

  • Knight, K. S., J. S. Kurylo, A. G. Endress, J. R. Stewart, and P. B. Reich. 2007. Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): a review. Biological Invasions 9:925–37.

    Article  Google Scholar 

  • Kucera, C. L. 1959. Weathering characteristics of deciduous leaf litter. Ecology 40:485–487.

    Article  Google Scholar 

  • Kurylo, J. S., K. S. Knight, J. R. Stewart, and A. G. Endress. 2007.Rhamnus cathartica: Native and naturalized distribution and habitat preferences. Journal of the Torrey Botanical Society 134:420–30.

    Article  Google Scholar 

  • Matthews, K. R. and N. H. Berg. 2005. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. Journal of Fish Biology 50:50–67.

    Article  Google Scholar 

  • McCormick, P. V. and J. A. Laing. 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11:199–216.

    Article  CAS  Google Scholar 

  • Mierzwa, K. S. 2001. MacArthur Woods Habitat Restoration Project: Baseline amphibian and reptile monitoring. Report to the Lake County Forest Preserve District. Planning Office, Lake County Forest Preserve District. Lake County, IL, USA.

    Google Scholar 

  • Mills, N. E. and M. C. Barnhart. 1998. Effects of hypoxia on embryonic development in twoAmbystoma and twoRana species. Physiological and Biochemical Zoology 72:179–188.

    Article  Google Scholar 

  • Nie, M., J. D. Crim, and G. R. Ultsch. 1999. Dissolved oxygen, temperature, and habitat selection by bullfrog tadpoles. Copeia 1999:155–62.

    Article  Google Scholar 

  • Ostrofsky, M. L. 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16:750–59.

    Article  Google Scholar 

  • Parish, G., L. Graef, L. Anhalt, R. Schloemer, and J. Sellar. 2006. Thirsty plants, dry soils: changes in soil moisture content after the removal of invasive species. Chicago Wilderness Journal 4:11–17.

    Google Scholar 

  • Petranka, J. W., J. J. Just, and E. C. Crawford. 1982. Hatching of amphibian embryos: the physiological trigger. Science 217:257–58.

    Article  CAS  PubMed  Google Scholar 

  • Pinder, A. W. and S. C. Friet. 1994. Oxygen transport in egg masses of the amphibiansRana sylvatica andAmbystoma maculatum: convection, diffusion, and oxygen production by algae. Journal of Experimental Biology 197:17–30.

    PubMed  Google Scholar 

  • Porej, D., M. Micacchion, and T. E. Hetherington. 2004. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biological Conservation 120:399–409.

    Article  Google Scholar 

  • Seltzner, S. and T. L. Eddy. 2003. Allelopathy inRhamnus cathartica, European buckthorn. The Michigan Botanist 42:51–61.

    Google Scholar 

  • Semlitsch, R. D. 1998. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conservation Biology 12:1113–19.

    Article  Google Scholar 

  • Seymour, R. S., J. D. Roberts, N. J. Mitchell, and A. J. Blaylock. 2000. Influence of environmental oxygen on development and hatching of aquatic eggs of the Australian frog,Crinia georgiana. Physiological and Biochemical Zoology 73:501–07.

    Article  CAS  PubMed  Google Scholar 

  • Skelly, D. K., E. E. Werner, and S. Cortwright. 1999. Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–37.

    Article  Google Scholar 

  • Skelly, D. K. and J. Golon. 2003. Assimilation of natural benthic substrates by two species of tadpoles. Herpetologica 59:37–42.

    Article  Google Scholar 

  • Swan, C. M. and M. A. Palmer. 2005. Leaf litter diversity leads to non-additivity in stream detritivore colonization dynamics. Oceanological and Hydrobiological Studies 34:19–38.

    Google Scholar 

  • ter Steege, H. 1994. Hemiphot: a programme to analyze vegetation indices, light and light quality from hemispherical photographs. Tropenbos Documents 3. Stichting Tropenbos, Wageningen, Netherlands.

    Google Scholar 

  • Ward, D. and O. J. Sexton. 1981. Anti-predator role of salamander egg membranes. Copeia 1981:724–26.

    Article  Google Scholar 

  • Warkentin, K. M. 2002. Hatching time, oxygen availability, and external gill regression in the tree frog,Agalychnis callidryas. Physiological and Biochemical Zoology 75:155–64.

    Article  PubMed  Google Scholar 

  • Werner, E. E. and K. S. Glennemeier. 1999. Influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1999:1–12.

    Article  Google Scholar 

  • Williams, B. K., T. A. G. Rittenhouse, and R. D. Semlitsch. 2008. Leaf litter input mediates tadpole performance across forest canopy treatments. Oecologia 155:377–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison B. Sacerdote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacerdote, A.B., King, R.B. Dissolved oxygen requirements for hatching success of two ambystomatid salamanders in restored ephemeral ponds. Wetlands 29, 1202–1213 (2009). https://doi.org/10.1672/08-235.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-235.1

Key Words

Navigation