Skip to main content
Log in

Stabilized water levels and Typha invasiveness

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Because Typha × glauca often dominates wetlands where humans have stabilized the natural hydrologic regime, we 1) compared its expansion rates where water levels were stabilized vs. fluctuating and 2) explored the potential for stabilized water levels to allow plants to accumulate more phosphorus (P) and increase growth. In three Wisconsin marshes, the area dominated by Typha expanded linearly over time, but rates were higher where water levels were stabilized than where they fluctuated naturally (based on nine aerial photos from 1963 to 2000). In a large wetland (412 ha) behind a dam, Typha × glauca expanded 81,152 m2/year, and clone diameters extended 3.9 ± 0.61 m/year. In contrast, a mixed stand (mostly T. angustifolia) in an upstream wetland with fluctuating water levels expanded only 2,327 m2/year, and clones extended only 2.5 ± 0.75 m/year. While various factors could have caused these differences, a separate two-factor experiment in outdoor microcosms supported the hypothesis that stabilized water levels alone can enhance T. × glauca spread. The experiment indicated that both stabilized water levels and P additions increased P accumulation and growth of T. × glauca. Constant inundation (5–10 cm deep) allowed T. × glauca to produce 56% more biomass (61.6 ± 4.0 g) than a regime with two drawdowns (39.4 ± 1.9 g; p < 0.001). Plants under constant inundation accumulated 0.15 ± 0.007 g P, which was 36% more than with one drawdown (0.12 ± 0.004 g; p < 0.001) and 67% more than with two drawdowns (0.09 ± 0.005 g; p < 0.001). Also as expected, the addition of 2 g P/m2 increased biomass 23% more than the control (57.8 ± 3.0 vs. 46.9 ± 3.0 g/plant; p = 0.02). Our microcosm results suggest that unavailable P can shift to a form that T. × glauca can use. Thus, internal eutrophication can augment rates of T. × glauca invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albert, D. A. and L. D. Minc. 2004. Plants as regional indicators of Great Lakes coastal wetland health. Aquatic Ecosystem Health and Management 7: 233–47.

    Article  Google Scholar 

  • Aldous, A., P. McCormick, C. Ferguson, S. Graham, and C. Craft. 2005. Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands. Restoration Ecology 13: 341–47.

    Article  Google Scholar 

  • Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.

    Google Scholar 

  • Boers, A. M. 2006. The effects of stabilized water levels on invasion by hybrid cattail (Typha × glauca). Ph.D. Dissertation. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Boers, A. M., R. L. D. Veltman, and J. B. Zedler. 2007. Typha × glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecological Engineering 29: 232–44.

    Article  Google Scholar 

  • Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–69.

    Article  CAS  Google Scholar 

  • Childers, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, and L. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality 32: 344–62.

    Article  CAS  PubMed  Google Scholar 

  • Day, R. T., P. A. Keddy, J. McNeill, and T. Carleton. 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69: 1044–54.

    Article  Google Scholar 

  • DeLaune, R. D., A. Jugsujinda, and K. R. Reddy. 1999. Effect of root oxygen stress on phosphorus uptake by cattail. Journal of Plant Nutrition 22: 459–66.

    Article  CAS  Google Scholar 

  • Fassett, N. C. and B. Calhoun. 1952. Introgression between Typha latifolia and T. angustifolia. Evolution 6: 367–79.

    Article  Google Scholar 

  • Frieswyk, C. B., C. Johnston, and J. B. Zedler. In press. Quantifying and qualifying dominance in vegetation. Journal of Great Lakes Research.

  • Frieswyk, C. B. and J. B. Zedler. 2007. Vegetation change in Great Lakes coastal wetlands: deviation from the historical cycle. Journal of Great Lakes Research 33: 366–80.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.

    Google Scholar 

  • Gittings, H. E. 2005. Hydrogeologic controls on springs in the Mukwonago River watershed, SE Wisconsin. M.S. Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Hill, N. M., P. A. Keddy, and I. C. Wisheu. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723–36.

    Article  PubMed  Google Scholar 

  • Keough, J. R., T. A. Thompson, G. R. Guntenspurgen, and D. A. Wilcox. 1999. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes. Wetlands 19: 821–34.

    Article  Google Scholar 

  • King, R. S., C. J. Richardson, D. L. Urban, and E. A. Romanowicz. 2004. Spatial dependency of vegetation—environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7: 75–97.

    Article  CAS  Google Scholar 

  • Koerselman, W., M. B. Van Kerkhoven, and J. T. A. Verhoeven. 1993. Release of inorganic nitrogen, phosphorus and potassium in peat soils: effect of temperature, water chemistry and water level. Biogeochemistry 20: 63–81.

    Article  CAS  Google Scholar 

  • Kuehn, M. M., J. E. Minor, and B. N. White. 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981–90.

    Article  CAS  PubMed  Google Scholar 

  • Kuehn, M. M. and B. N. White. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha × glauca. Canadian Journal of Botany 77: 906–12.

    Article  Google Scholar 

  • Lee, D. W. 1975. Population variation and introgression in North American Typha. Taxon 24: 633–41.

    Article  Google Scholar 

  • Lorenzen, B., H. Brix, I. A. Mendelssohn, K. L. McKee, and S. L. Miao. 2001. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquatic Botany 70: 117–33.

    Article  CAS  Google Scholar 

  • Mulhouse, J. M. and S. M. Galatowitsch. 2003. Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post re-flooding. Plant Ecology 169: 143–59.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration. 2005. National Weather Service, Climate. Online: http://www.weather. gov/climate/index.php?wfo=mkx.

  • Neill, C. 1990. Effects of nutrients and water levels on emergent macrophyte biomass in a prairie marsh. Canadian Journal of Botany 68: 1007–14.

    CAS  Google Scholar 

  • Newman, S., J. B. Grace, and J. W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for everglades restoration. Ecological Applications 6: 774–83.

    Article  Google Scholar 

  • Pant, H. K. and K. R. Reddy. 2001. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality 30: 1474–80.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, W. H. and R. A. Khalid. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186: 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, J. E., W. M. Kemp, R. Bartleson, W. R. Boynton, C. Chen, J. C. Cornwell, R. H. Gardner, D. C. Hinkle, E. D. Houde, T. C. Malone, W. P. Mowitt, L. Murray, L. P. Sanford, J. C. Stevenson, K. L. Sundberg, and S. E. Suttles. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. BioScience 53: 1181–97.

    Article  Google Scholar 

  • Phillips, I. R. 1998. Phosphorus availability and sorption under alternating waterlogged and drying conditions. Communications in Soil Science and Plant Analysis 29: 3045–59.

    Article  CAS  Google Scholar 

  • Richardson, C. J. 1999. The role of wetlands in storage, release, and cycling of phosphorus on the landscape: a 25 year retrospective. p. 47–68. In K. R. Reddy (ed.) Phosphorus Biogeochemistry in Sub-Tropical Ecosystems. CRC Press/ Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Richardson, C. J. and P. E. Marshall. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56: 279–302.

    Article  Google Scholar 

  • Selbo, S. M. and A. A. Snow. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–69.

    Article  Google Scholar 

  • Sharitz, R. R., S. A. Wineriter, M. H. Smith, and E. H. Liu. 1980. Comparison of isozymes among Typha species in the eastern United States. American Journal of Botany 67: 1297–1303.

    Article  CAS  Google Scholar 

  • Shay, J. M., P. M. J. de Geus, and M. R. M. Kapinga. 1999. Changes in shoreline vegetation over a 50-year period in the Delta Marsh, Manitoba in response to water levels. Wetlands 19: 413–25.

    Article  Google Scholar 

  • Shoemaker, T. 2002. Evaluation of the hydrology and hydraulics of Eagle Spring Lake, Eagle, WI. M.S. Thesis. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–87.

    Article  Google Scholar 

  • Smith, S. G. 1987. Typha: its taxonomy and the ecological significance of its hybrids. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 27: 129–38.

    Google Scholar 

  • Svengsouk, L. J. and W. J. Mitsch. 2001. Dynamics of mixtures of Typha latifolia and Schoenoplectus tabernaemontani in nutrientenrichment wetland experiments. American Midland Naturalist 145: 309–24.

    Article  Google Scholar 

  • Tompkins, T. M. and J. Taylor. 1983. Hybridization in Typha in Genesee County, Michigan. Michigan Botanist 22: 127–31.

    Google Scholar 

  • Tsyusko, O. V., M. H. Smith, R. R. Sharitz, and T. C. Glenn. 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal of Botany 92: 1161–69.

    Article  Google Scholar 

  • van der Valk, A. G. 2000. Vegetation dynamics and models. p. 125–61. In H. R. Murkin, A. G. van der Valk, and W. R. Clark (eds.) Prairie Wetland Ecology: The Contribution of the Marsh Ecology Research Program. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Venterink, H. O., T. E. Davidsson, K. Kiehl, and L. Leonardson. 2002. Impact of drying and re-wetting on N, P, and K dynamics in a wetland soil. Plant and Soil 243: 119–30.

    Article  CAS  Google Scholar 

  • Waters, I. and J. M. Shay. 1991. Effective water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70: 349–51.

    Article  Google Scholar 

  • WDNR (Wisconsin Department of Natural Resources). 2005. WDNR — Lulu Lake State Natural Area. Online: http://www. dnr.state.wi.us/org/land/er/sna/snal38.htm.

  • Wilcox, D. A. 1993. Effects of water-level regulation on wetlands of the Great Lakes. Great Lakes. Wetlands 4: 1–2, 11.

    Google Scholar 

  • Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog wetland complex, Indiana Dunes National Lakeshore. Wetlands 4: 115–28.

    Article  Google Scholar 

  • Wilcox, D. A., T. A. Thompson, R. K. Booth, and J. R. Nicholas. 2007. Lake-level variability and water availability in the Great Lakes. U.S. Geological Survey Circular 1311. Reston, VA, USA.

  • Windeis, S., S. E. Travis, and J. Marburger. 2005. Assessment of cattail (Typha spp.) genetic status in three Great Lakes National Parks. Abstract. Final Program, 25th International Symposium, North American Lake Management Society. p. 112–13. Madison, WI, USA.

    Google Scholar 

  • Woo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca? Wetlands 22: 509–21.

    Article  Google Scholar 

  • Young, E. O. and D. S. Ross. 2001. Phosphate release from seasonally flooded soils: a laboratory microcosm study. Journal of Environmental Quality 30: 91–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boers, A.M., Zedler, J.B. Stabilized water levels and Typha invasiveness. Wetlands 28, 676–685 (2008). https://doi.org/10.1672/07-223.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-223.1

Key Words

Navigation