The Botanical Review

, Volume 68, Issue 2, pp 270–334

Acclimation and adaptive responses of woody plants to environmental stresses

  • T. T. Kozlowski
  • S. G. Pallardy

DOI: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

Cite this article as:
Kozlowski, T.T. & Pallardy, S.G. Bot. Rev (2002) 68: 270. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2


The predominant emphasis on harmful effects of environmental stresses on growth of woody plants has obscured some very beneficial effects of such stresses. Slowly increasing stresses may induce physiological adjustment that protects plants from the growth inhibition and/or injury that follow when environmental stresses are abruptly imposed. In addition, short exposures of woody plants to extreme environmental conditions at critical times in their development often improve growth. Furthermore, maintaining harvested seedlings and plant products at very low temperatures extends their longevity.

Drought tolerance: Seedlings previously exposed to water stress often undergo less inhibition of growth and other processes following transplanting than do seedlings not previously exposed to such stress. Controlled wetting and drying cycles often promote early budset, dormancy, and drought tolerance. In many species increased drought tolerance following such cycles is associated with osmotic adjustment that involves accumulation of osmotically active substances. Maintenance of leaf turgor often is linked to osmotic adjustment. A reduction in osmotic volume at full turgor also results in reduced osmotic potential, even in the absence of solute accumulation. Changes in tissue elasticity may be important for turgor maintenance and drought tolerance of plants that do not adjust osmotically.

Water deficits and nutrient deficiencies promote greater relative allocation of photosynthate to root growth, ultimately resulting in plants that have higher root:shoot ratios and greater capacity to absorb water and minerals relative to the shoots that must be supported.

At the molecular level, plants respond to water stress by synthesis of certain new proteins and increased levels of synthesis of some proteins produced under well-watered conditions. Evidence has been obtained for enhanced synthesis under water stress of water-channel proteins and other proteins that may protect membranes and other important macromolecules from damage and denaturation as cells dehydrate.

Flood tolerance: Both artificial and natural flooding sometimes benefit woody plants. Flooding of orchard soils has been an essential management practice for centuries to increase fruit yields and improve fruit quality. Also, annual advances and recessions of floods are crucial for maintaining valuable riparian forests. Intermittent flooding protects bottomland forests by increasing groundwater supplies, transporting sediments necessary for creating favorable seedbeds, and regulating decomposition of organic matter. Major adaptations for flood tolerance of some woody plants include high capacity for producing adventitious roots that compensate physiologically for decay of original roots under soil anaerobiosis, facilitation of oxygen uptake through stomata and newly formed lenticels, and metabolic adjustments. Halophytes can adapt to saline water by salt tolerance, salt avoidance, or both.

Cold hardiness: Environmental stresses that inhibit plant growth, including low temperature, drought, short days, and combinations of these, induce cold hardening and hardiness in many species. Cold hardiness develops in two stages: at temperatures between 10° and 20°C in the autumn, when carbohydrates and lipids accumulate; and at subsequent freezing temperatures. The sum of many biochemical processes determines the degree of cold tolerance. Some of these processes are hormone dependent and induced by short days; others that are linked to activity of enzyme systems are temperature dependent. Short days are important for development of cold hardiness in species that set buds or respond strongly to photoperiod. Nursery managers often expose tree seedlings to moderate water stress at or near the end of the growing season. This accelerates budset, induces early dormancy, and increases cold hardiness.

Pollution tolerance: Absorption of gaseous air pollutants varies with resistance to flow along the pollutant’s diffusion path. Hence, the amount of pollutant absorbed by leaves depends on stomatal aperture, stomatal size, and stomatal frequency. Pollution tolerance is increased when drought, dry air, or flooding of soil close stomatal pores.

Heat tolerance: Exposure to sublethal high temperature can increase the thermotolerance of plants. Potential mechanisms of response include synthesis of heat-shock proteins and isoprene and antioxidant production to protect the photosynthetic apparatus and cellular metabolism.

Breaking of dormancy: Seed dormancy can be broken by cold or heat. Embryo dormancy is broken by prolonged exposure of most seeds to temperatures of 1° to 15°C. The efficiency of treatment depends on interactions between temperature and seed moisture content. Germination can be postponed by partially dehydrating seeds or altering the temperature during seed stratification. Seed-coat dormancy can be broken by fires that rupture seed coats or melt seedcoat waxes, hence promoting water uptake. Seeds with both embryo dormancy and seed-coat dormancy may require exposure to both high and low temperatures to break dormancy. Exposure to smoke itself can also serve as a germination cue in breaking seed dormancy in some species.

Bud dormancy of temperate-zone trees is broken by winter cold. The specific chilling requirement varies widely with species and genotype, type of bud (e.g., vegetative or floral bud), depth of dormancy, temperature, duration of chilling, stage of plant development, and daylength. Interruption of a cold regime by high temperature may negate the effect of sustained chilling or breaking of bud dormancy. Near-lethal heat stress may release buds from both endodormancy and ecodormancy.

Pollen shedding: Dehiscence of anthers and release of pollen result from dehydration of walls of anther sacs. Both seasonal and diurnal pollen shedding are commonly associated with shrinkage and rupture of anther walls by low relative humidity. Pollen shedding typically is maximal near midday (low relative humidity) and low at night (high relative humidity). Pollen shedding is low or negligible during rainy periods.

Seed dispersal: Gymnosperm cones typically dehydrate before opening. The cones open and shed seeds because of differential shrinkage between the adaxial and abaxial tissues of cone scales. Once opened, cones may close and reopen with changes in relative humidity. Both dehydration and heat are necessary for seed dispersal from serotinous (late-to-open) cones. Seeds are stored in serotinous cones because resinous bonds of scales prevent cone opening. After fire melts the resinous material, the cone scales can open on drying. Fires also stimulate germination of seeds of some species. Some heath plants require fire to open their serotinous follicles and shed seeds. Fire destroys the resin at the valves of follicles, and the valves then reflex to release the seeds. Following fire the follicles of some species require alternate wetting and drying for efficient seed dispersal.

Stimulation of reproductive growth: Vegetative and reproductive growth of woody plants are negatively correlated. A heavy crop of fruits, cones, and seeds is associated with reduced vegetative growth in the same or following year (or even years). Subjecting trees to drought during early stages of fruit development to inhibit vegetative growth, followed by normal irrigation, sometimes favors reproductive growth. Short periods of drought at critical times not only induce formation of flower buds but also break dormancy of flower buds in some species. Water deficits may induce flowering directly or by inhibiting shoot flushing, thereby limiting the capacity of young leaves to inhibit floral induction. Postharvest water stress often results in abundant return bloom over that in well-irrigated plants. Fruit yields of some species are not reduced or are increased by withholding irrigation during the period of shoot elongation. In several species, osmotic adjustment occurs during deficit irrigation. In other species, increased fruit growth by imposed drought is not associated largely with osmotic adjustment and maintenance of leaf turgor.

Seedling storage: Tree seedlings typically are stored at temperatures just above or below freezing. Growth and survival of cold-stored seedlings depend on such factors as: date of lifting from the nursery; species and genotype; storage temperature, humidity, and illumination; duration of storage; and handling of planting stock after storage. Seedlings to be stored over winter should be lifted from the nursery as late as possible. Dehydration of seedlings before, during, and after storage adversely affects growth of outplanted seedlings. Long-term storage of seedlings may result in depletion of stored carbohydrates by respiration and decrease of root growth potential. Although many seedlings are stored in darkness, a daily photoperiod during cold storage may stimulate subsequent growth and increase survival of outplanted seedlings. For some species, rapid thawing may decrease respiratory consumption of carbohydrates (over slowly thawed seedlings) and decrease development of molds.

Pollen storage: Preservation of pollen is necessary for insurance against poor flowering years, for gene conservation, and for physiological and biochemical studies. Storage temperature and pollen moisture content largely determine longevity of stored pollen. Pollen can be stored successfully for many years in deep freezers at temperatures near −15°C or in liquid nitrogen (−196°C). Cryopreservation of pollen with a high moisture content is difficult because ice crystals may destroy the cells. Pollens of many species do not survive at temperatures below −40°C if their moisture contents exceed 20–30%. Pollen generally is air dried, vacuum dried, or freeze dried before it is stored. To preserve the germination capacity of stored pollen, rehydration at high humidity often is necessary.

Seed storage: Seeds are routinely stored to provide a seed supply during years of poor seed production, to maintain genetic diversity, and to breed plants. For a long time, seeds were classified as either orthodox (relatively long-lived, with capacity for dehydration to very low moisture contents without losing viability) or recalcitrant (short-lived and requiring a high moisture content for retention of viability). More recently, some seeds have been reclassified as suborthodox or intermediate because they retain viability when carefully dried. True orthodox seeds are preserved much more easily than are nonorthodox seeds. Orthodox seeds can be stored for a long time at temperatures between 2° and −20°C, with temperatures below −5°C preferable. Some orthodox seeds have been stored at superlow temperatures, although temperatures of −40°, −70°, or −196°C have not been appreciably better than −20°C for storage of seeds of a number of species. Only relatively short-term storage protocols have been developed for nonorthodox seeds. These treatments typically extend seed viability to as much as a year. The methods often require cryopreservation of excised embryos. Responses to cryopreservation of nonorthodox seeds or embryos vary with species and genotype, rate of drying, use of cryoprotectants, rates of freezing and thawing, and rate of rehydration.

Fruit storage: Storing fruits at low temperatures above freezing, increasing the CO2 concentration, and lowering the O2 concentration of fruit storage delays senescence of fruits and prolongs their life. Fruits continue to senesce and decay while in storage and become increasingly susceptible to diseases. Both temperate-zone and tropical fruits may develop chilling injury characterized by lesions, internal discoloration, greater susceptibility to decay, and shortened storage life. Chilling injury can be controlled by chemicals, temperature conditioning, and intermittent warming during storage. Stored fruits may become increasingly susceptible to disease organisms. Fruit diseases can be controlled by cold, which inhibits growth of microorganisms and maintains host resistance. Exposure of fruits to high CO2 and low O2 during storage directly suppresses disease-causing fungi. Pathogens also can be controlled by exposing fruits to heat before, during, and after storage. Scald that often develops during low-temperature storage can be controlled by chemicals and by heat treatments.

Copyright information

© The New York Botanical Garden 2002

Authors and Affiliations

  • T. T. Kozlowski
    • 1
  • S. G. Pallardy
    • 3
  1. 1.Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyUSA
  2. 2.CarlsbadUSA
  3. 3.School of Natural ResourcesUniversity of MissouriColumbiaUSA