Skip to main content
Log in

Impairment of liver regeneration by the histone deacetylase inhibitor valproic acid in mice

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Background and objective: Liver regeneration is a complex process regulated by a group of genetic and epigenetic factors. A variety of genetic factors have been reported, whereas few investigations have focused on epigenetic regulation during liver regeneration. In the present study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was used to investigate the effect of HDAC on liver regeneration. Methods: VPA was administered via intraperitoneal injection to 2/3 partially hepatectomized mice to detect hepatocyte proliferation during liver regeneration. The mice were sacrificed, and their liver tissues were harvested at sequential time points from 0 to 168 h after treatment. DNA synthesis was detected via a BrdU assay, and cell proliferation was tested using Ki-67. The expressions of cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), and CDK4 were detected by Western blot analysis. Chromatin immunoprecipitation (ChIP) assay was used to examine the recruitment of HDACs to the target promoter regions and the expression of the target gene was detected by Western blot. Results: Immunohistochemical analysis showed that cells positive for BrdU and Ki-67 decreased, and the peak of BrdU was delayed in the VPA-administered mice. Consistently, cyclin D1 expression was also delayed. We identified B-myc as a target gene of HDACs by complementary DNA (cDNA) microarray. The expression of B-myc increased in the VPA-administered mice after hepatectomy (PH). The ChIP assay confirmed the presence of HDACs at the B-myc promoter. Conclusions: HDAC activities are essential for liver regeneration. Inhibiting HDAC activities delays liver regeneration and induces liver cell cycle arrest, thereby causing an anti-proliferative effect on liver regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asker, C., Magnusson, K.P., Piccoli, S.P., Andersson, K., Klein, G., Cole, M.D., Wiman, K.G., 1995. Mouse and rat B-myc share amino acid sequence homology with the C-myc transcriptional activator domain and contain a B-myc specific carboxyl terminal region. Oncogene, 11(10):1963–1969.

    PubMed  CAS  Google Scholar 

  • Awad, M.M., Gruppuso, P.A., 2000. Cell cycle control during liver development in the rat: evidence indicating a role for cyclin D1 posttranscriptional regulation 1. Cell Growth Differ., 11(6):325–334.

    PubMed  CAS  Google Scholar 

  • Bartolini, G., Orlandi, M., Papi, A., Ammar, K., Tonelli, R., Franzoni, M., Pession, A., Rocchi, P., Ferreri, A.M., 2008. Growth inhibition and proapoptotic activity induction by I IF and valproic acid on RA-resistant leukemia cells. Anticancer Res., 28(1A):283–288.

    PubMed  CAS  Google Scholar 

  • Burton, R.A., Mattila, S., Taparowsky, E.J., Post, C.B., 2006. B-myc: N-terminal recognition of myc binding proteins. Biochemistry, 45(32):9857–9865. [doi:10.1021/bi060379n]

    Article  PubMed  CAS  Google Scholar 

  • Cheng, M., Sexl, V., Sherr, C.J., Roussel, M.F., 1998. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). PNAS, 95(3):1091–1096. [doi:10.1073/pnas.95.3.1091]

    Article  PubMed  CAS  Google Scholar 

  • Cheng, X., Blumenthal, R.M., 2011. Introduction-epiphanies in epigenetics. Prog. Mol. Biol. Transl. Sci., 101:1–21. [doi:10.1016/B978-0-12-387685-0.00001-9]

    Article  PubMed  CAS  Google Scholar 

  • Cornwall, G.A., Collis, R., Xiao, Q., Hsia, N., Hann, S.R., 2001. B-myc, a proximal caput epididymal protein, is dependent on androgens and testicular factors for expression. Biol. Reprod., 64(6):1600–1607. [doi:10.1095/biolreprod64.6.1600]

    Article  PubMed  CAS  Google Scholar 

  • Facchini, L.M., Penn, L.Z., 1998. The molecular role of myc in growth and transformation: recent discoveries lead to new insights. FASEB J., 12(9):633–651.

    PubMed  CAS  Google Scholar 

  • Fausto, N., 2000. Liver regeneration. J. Hepatol., 32(1 Suppl.): 19–31. [doi:10.1016/S0168-8278(00)80412-2]

    Article  PubMed  CAS  Google Scholar 

  • Fujiyoshi, M., Ozaki, M., 2011. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J. Hepatobilliary Pancreat. Sci., 18(1):13–22. [doi:10.1007/s00534-010-0304-2]

    Article  Google Scholar 

  • Gregory, M.A., Xiao, Q., Cornwall, G.A., Lutterbach, B., Hann, S.R., 2000. B-myc is preferentially expressed in hormonally-controlled tissues and inhibits cellular proliferation. Oncogene, 19(42):4886–4895. [doi:10.1038/sj.onc.1203851]

    Article  PubMed  CAS  Google Scholar 

  • Gurvich, N., Tsygankova, O.M., Meinkoth, J.L., Klein, P.S., 2004. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res., 64(3):1079–1086. [doi:10.1158/0008-5472.CAN-03-0799]

    Article  PubMed  CAS  Google Scholar 

  • Higgins, G.M., Anderson, R.M., 1931. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol., 12:186–202.

    Google Scholar 

  • Ingvarsson, S., Asker, C., Acelson, H., Klein, G., Sumegi, J., 1988. Structure and expression of B-myc, a new member of the myc gene family. Mol. Cell. Biol., 8(8):3168–3174. [doi:10.1128/MCB.8.8.3168]

    PubMed  CAS  Google Scholar 

  • Kaiser, M., Zavrski, I., Sterz, J., Jakob, C., Fleissner, C., Kloetzel, P.M., Sezer, O., Heider, U., 2006. The effects of the histone deacetylase inhibitor valproic acid on cell cycle, growth suppression and apoptosis in multiple myeloma. Haematologica, 91(2):248–251.

    PubMed  CAS  Google Scholar 

  • Katsuyama, T., Paro, R., 2011. Epigenetic reprogramming during tissue regeneration. FEBS Lett., 585(11):1617–1624. [doi:10.1016/j.febslet.2011.05.010]

    Article  PubMed  CAS  Google Scholar 

  • Ke, Q., Erbolat, Zhang, H.Y., Bu, H., Li, S., Shi, D.N., Yang, G.H., Chen, H.J., Wei, B., 2007. Clinicopathologic features of pleomorphic hyalinizing angiectatic tumor of soft parts. Chin. Med. J., 120(10):876–881.

    PubMed  Google Scholar 

  • Martín-Subero, J.I., Esteller, M., 2011. Profiling epigenetic alterations in disease. Adv. Exp. Med. Biol., 711:162–177. [doi:10.1007/978-1-4419-8216-2_12]

    Article  PubMed  Google Scholar 

  • Merion, R.M., 2010. Current status and future of liver transplantation. Semin. Liver Dis., 30(4):411–421. [doi:10.1055/s-0030-1267541]

    Article  PubMed  Google Scholar 

  • Michaelis, M., Michaelis, U.R., Fleming, I., Suhan, T., Cinatl, J., Blaheta, R.A., Hoffmann, K., Kotchetkov, R., Busse, R., Nau, H., et al., 2004. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol. Pharmacol., 65(3): 520–527. [doi:10.1124/mol.65.3.520]

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, C., Willenbring, H., 2008. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc., 3(7):1167–1170. [doi:10.1038/nprot.2008.80]

    Article  PubMed  CAS  Google Scholar 

  • Mongan, N.P., Gudas, L.J., 2005. Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′-deoxycytidine, restores expression of silenced RARβ2 in breast cancer cells. Mol. Cancer Ther., 4(3):477–486. [doi:10.1158/1535-7163.MCT-04-0079]

    PubMed  CAS  Google Scholar 

  • Nakayama, T., Takami, Y., 2001. Participation of histones and histone-modifying enzymes in cell functions through alterations in chromatin structure. J. Biochem., 129(4): 491–499. [doi:10.1093/oxfordjournals.jbchem.a002882]

    Article  PubMed  CAS  Google Scholar 

  • Nelsen, C.J., Rickheim, D.G., Timchenko, N.A., Stanley, M.W., Albrecht, J.H., 2001. Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. Cancer Res., 61(23):8564–8568.

    PubMed  CAS  Google Scholar 

  • Patil, M.A., Lee, S.A., Macias, E., Lam, E.T., Xu, C.R., Jones, K.D., Ho, C., Rodriguez-Puebla, M., Chen, X., 2009. Role of cyclin D1 as a mediator of c-Met- and β-catenin-induced hepatocarcinogenesis. Cancer Res., 69(1):253–261. [doi:10.1158/0008-5472.CAN-08-2514]

    Article  PubMed  CAS  Google Scholar 

  • Resar, L.M., Dolde, C., Barret, J.F., Dang, C.V., 1993. B-myc inhibits neoplastic transformation and transcriptional activation by c-myc. Mol. Cell. Biol., 13(2):1130–1136. [doi:10.1128/MCB.13.2.1130]

    PubMed  CAS  Google Scholar 

  • Riehle, K.J., Dan, Y.Y., Campbell, J.S., Fausto, N., 2011. New concepts in liver regeneration. J. Gastroenterol. Hepatol., 26(7):1218. [doi:10.1111/j.1440-1746.2010.06539.x]

    Article  Google Scholar 

  • Rodríguez, J.L., Sandoval, J., Serviddio, G., Sastre, J., Morante, M., Perrelli, M.G., Martínez-Chantar, M.L., Viña, J., Viña, J.R., Mato, J.M., et al., 2006. Id2 leaves the chromatin of the E2F4-p130-controlled c-myc promoter during hepatocyte priming for liver regeneration. Biochem. J., 398(3):431–437. [doi:10.1042/BJ20060380]

    Article  PubMed  Google Scholar 

  • Sakamuro, D., Prendergast, G., 1999. New myc-interacting proteins: a second myc network emerges. Oncogene, 18(19):2942–2954. [doi:10.1038/sj.onc.1202725]

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana, A., Kaldis, P., 2009. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 28(33):2925–2939. [doi:10.1038/onc.2009.170]

    Article  PubMed  CAS  Google Scholar 

  • Shen, S., Sandoval, J., Swiss, V.A., Li, J., Dupree, J., Franklin, R.J.M., Casaccia-Bonnefil, P., 2008. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci., 11(9): 1024–1034. [doi:10.1038/nn.2172]

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C.J., 1995. D-type cyclins. Trends Biochem. Sci., 20(5):187–190. [doi:10.1016/S0968-0004(00)89005-2]

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C.J., 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res., 60(14):3689–3695.

    PubMed  CAS  Google Scholar 

  • Sherr, C.J., Roberts, J.M., 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 13(12):1501–1512. [doi:10.1101/gad.13.12.1501]

    Article  PubMed  CAS  Google Scholar 

  • Simile, M.M., de Miglio, M.R., Muroni, M.R., Frau, M., Asara, G., Serra, S., Muntoni, M.D., Seddaiu, M.A., Daino, L., Feo, F., et al., 2004. Down-regulation of c-myc and Cyclin D1 genes by antisense oligodeoxy nucleotides inhibits the expression of E2F1 and in vitro growth of HepG2 and Morris 5123 liver cancer cells. Carcinogenesis, 25(3): 333–341. [doi:10.1093/carcin/bgh014]

    Article  PubMed  CAS  Google Scholar 

  • Takai, N., Desmond, J.C., Kumagai, T., Gui, D., Said, J.W., Whittaker, S., Miyakawa, I., Koeffler, H.P., 2004. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res., 10(3):1141–1149. [doi:10.1158/1078-0432.CCR-03-0100]

    Article  PubMed  CAS  Google Scholar 

  • Thiaqalinqam, S., Cheng, K.H., Lee, H.J., Mineva, N., Thiaqalingam, A., Ponte, J.F., 2003. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci., 983(1):84–100. [doi:10.1111/j.17496632.2003.tb05964.x]

    Article  Google Scholar 

  • Turner, B.M., 2000. Histone acetylation and epigenetic code. Bioessays, 22(9):836–845. [doi:10.1002/1521-1878(200 009)22:9<836::AID-BIES9>3.0.CO;2-O]

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., Salisbury, E., Shi, X.R., Timchenko, L., Medrano, E.E., Timchenko, N.A., 2008a. HDAC1 cooperates with C/EBPα in the inhibition of liver proliferation in old mice. J. Biol. Chem., 283(38):26169–26178. [doi:10.1074/jbc.M803544200]

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., Salisbury, E., Shi, X.R., Timchenko, L., Medrano, E.E., Timchenko, N.A., 2008b. HDAC1 promotes liver proliferation in young mice via interactions with C/EBPβ. J. Biol. Chem., 283(38):26179–26187. [doi:10.1074/jbc.M803545200]

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, A., 2004. Regulation of liver regeneration. Nephrol. Dial. Transplant., 19(Suppl. 4):iv6–iv10. [doi:10.1093/ndt/gfh1034]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Bu.

Additional information

Project (Nos. 30971118 and 31000601) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, Q., Yang, Rn., Ye, F. et al. Impairment of liver regeneration by the histone deacetylase inhibitor valproic acid in mice. J. Zhejiang Univ. Sci. B 13, 695–706 (2012). https://doi.org/10.1631/jzus.B1100362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100362

Key words

CLC number

Navigation