Skip to main content
Log in

Preliminary experimental study on solid-fuel rocket scramjet combustor

固体火箭超燃冲压发动机燃烧室初步实验研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Liquid or gaseous fuel scramjet technology has made great progress, and there has been some research attention to solid-fuel scramjet. A new scramjet configuration using solid fuel as propellant, namely solid-fuel rocket scramjet, is tested experimentally. It consists of two combustors. One is a rocket combustor used as gas generator, and the other is a supersonic combustor used for secondary combustion. The experiment simulates a flight Mach number of 4 at high altitude (stagnation temperature and pressure are 1170 K and 1.16 MPa, respectively), and metalized solid fuel is used as propellant. The results reveal that fuel-rich gas from the gas generator can burn with air in the supersonic combustor. Preliminary evaluation results show that the combustion efficiency of the propellant is about 90%, and the total pressure recovery coefficient in the supersonic combustor is about 0.6. These results indicate that the configuration of solid-fuel rocket scramjet is feasible.

摘要

目的

通过发动机直连式实验,验证燃气发生器产生的 富燃燃气可以在超声速气流中二次燃烧,进而证 明固体火箭超燃冲压发动机方案的可行性,并初 步评估固体火箭超燃冲压发动机燃烧室的工作 性能。

创新点

1. 提出固体火箭超燃冲压发动机构型方案,并开 展固体火箭超燃冲压发动机燃烧室直连式实验 研究;2. 验证了固体火箭超燃冲压发动机构型可 行;3. 初步评估了固体火箭超燃冲压发动机燃烧 室的工作性能。

方法

1. 通过直连式实验测定固体火箭超燃冲压发动机 燃烧室的工作参数(图2、3 和4);2. 通过实验 现象(图8)和数据处理,确定燃气发生器产生 的富燃燃气可以在超声速燃烧室中燃烧,进而确 定固体火箭超燃冲压发动机方案的可行性;3. 初 步确定发动机燃烧室的工作性能(公式(6)和 (7))

结论

1. 燃气发生器中产生的富燃燃气可以在超声速燃 烧室中燃烧,固体火箭超燃冲压发动机构型方案 可行;2. 初步评估了固体火箭超燃冲压发动机燃 烧室的工作性能,总压恢复系数约为0.6,燃烧 效率约为90%;3.燃气发生器产生的部分一次燃 气沉积于燃气发生器喉部,使燃气发生器的工作 压力增加,进而引起富燃燃气质量流量的增加; 4. 燃烧室中的总压损失主要集中在富燃燃气入 口处,总压损失主要由射流引起的激波和燃气二次燃烧引起。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus, W.J., 1991. An Investigation into the Performance Characteristics of a Solid Fuel Scramjet Propulsion Device. MS Thesis, Naval Postgraduate School, Monterey, USA.

    Google Scholar 

  • Bao, W., Yang, Q.C., Chang, J.T., et al., 2013. Dynamic characteristics of combustion mode transitions in a strutbased scramjet combustor model. Journal of Propulsion and Power, 29(5):1244–1248. http://dx.doi.org/10.2514/1.B34921

    Article  Google Scholar 

  • Ben-Yakar, A., Natan, B., Gany, A., 1998. Investigation of a solid fuel scramjet combustor. Journal of Propulsion and Power, 14(4):447–455. http://dx.doi.org/10.2514/2.5321

    Article  Google Scholar 

  • Brieschenk, S., O’Byrne, S., Kleine, H., 2013. Laser-induced plasma ignition studies in a model scramjet engine. Combustion and Flame, 160(1):145–148. http://dx.doi.org/10.1016/j.combustflame.2012.08.011

    Article  Google Scholar 

  • Curran, E.T., Murthy, S.N.B., 2000. Scramjet Propulsion. The American Institute of Aeronautics and Astronautics, Reston, USA, p.588–593.

    Google Scholar 

  • Fry, R.S., 2004. A century of ramjet propulsion technology evolution. Journal of Propulsion and Power, 20(1):27–58. http://dx.doi.org/10.2514/1.9178

    Article  MathSciNet  Google Scholar 

  • Glagolev, A.I., Zubkov, A.I., Panov, Y.A., 1967. Supersonic flow past a gas jet obstacle emerging from a plate. Fluid Dynamics, 2(3):60–64. http://dx.doi.org/10.1007/BF01027359

    Article  Google Scholar 

  • Glagolev, A.I., Zubkov, A.I., Panov, Y.A., 1968. Interaction between a supersonic flow and gas issuing from a hole in a plane. Fluid Dynamics, 3(2):99–103.

    Google Scholar 

  • Gordon, S., McBride, B.J., 1994. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis. NASA Reference Publication, USA.

    Google Scholar 

  • Huang, W., 2014. Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches. International Journal of Hydrogen Energy, 39(8):3914–3925. http://dx.doi.org/10.1016/j.ijhydene.2013.12.129

    Article  Google Scholar 

  • Huang, W., 2015. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(7):551–561. http://dx.doi.org/10.1631/jzus.A1500021

    Article  Google Scholar 

  • Huang, W., Yan, L., 2013. Progress in research on mixing techniques for transverse injection flow fields in supersonic crossflows. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(8):554–564. http://dx.doi.org/10.1631/jzus.A1300096

    Article  Google Scholar 

  • Huang, W., Li, M.H., Ding, F., et al., 2016. Supersonic mixing augmentation mechanism induced by a wall-mounted cavity configuration. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):45–53. http://dx.doi.org/10.1631/jzus.A1500244

    Article  Google Scholar 

  • Li, J.P., Song, W.Y., Xing, Y., et al., 2008. Influences of geometric parameters upon nozzle performances in scramjets. Chinese Journal of Aeronautics, 21(6):506–511. http://dx.doi.org/10.1016/S1000-9361(08)60167-3

    Article  Google Scholar 

  • Miller, W., McClendon, S., Burkes, W., 1981. Design approaches for variable flow ducted rockets. 17th Joint Propulsion Conference, Colorado Springs, USA. http://dx.doi.org/10.2514/6.1981-1489

    Book  Google Scholar 

  • Saraf, S., Gany, A., 2007. Testing metalized solid fuel scramjet combustor. 18th International Symposium on Air Breathing Engines, p.1176–1187.

    Google Scholar 

  • van Driest, E.R., 2003. Turbulent boundary layer in compressible fluid. Journal of Spacecraft and Rockets, 40(6): 1012–1028. http://dx.doi.org/10.2514/2.7048

    Article  Google Scholar 

  • Wang, L.H., Wu, Z.W., Chi, H.W., et al., 2015. Numerical and experimental study on the solid-fuel scramjet combustor. Journal of Propulsion and Power, 31(2):685–693. http://dx.doi.org/10.2514/1.B35302

    Article  Google Scholar 

  • Wang, Z.G., Wang, H.B., Sun, M.B., 2014. Review of cavitystabilized combustion for scramjet applications. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(14):2718–2735. http://dx.doi.org/10.1177/0954410014521172

    Article  Google Scholar 

  • Witt, M.A., 1989. Investigation into the Feasibility of Using Solid Fuel Ramjets for High Supersonic Low Hypersonic Tactical Missiles. MS Thesis, Naval Postgraduate School, Monterey, USA.

    Google Scholar 

  • Yi, S.H., Chen, Z., 2015. Review of recent experimental studies of the shock train low field in the isolator. Acta Physica Sinica, 64(19):0199401 (in Chinese). http://dx.doi.org/10.7498/aps.64.199401

    Google Scholar 

  • Yu, G., Li, J.G., Zhao, J.R., et al., 1998. Hydrogen-air supersonic combustion study by strut injectors. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. http://dx.doi.org/10.2514/6.1998-3275

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-xun Xia.

Additional information

ORCID: Zhong LV, http://orcid.org/0000-0003-3741-3186; Zhi-xun XIA, http://orcid.org/0000-0002-2315-3005

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Xia, Zx., Liu, B. et al. Preliminary experimental study on solid-fuel rocket scramjet combustor. J. Zhejiang Univ. Sci. A 18, 106–112 (2017). https://doi.org/10.1631/jzus.A1600489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600489

Key words

CLC number

关键词

Navigation