Skip to main content
Log in

Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland

  • Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anthoni, P.M., Freibauer, A., Kolle, O., Schulze, E.D., 2004. Winter wheat carbon exchange in Thuringia, Germany.Agricultural and Forest Meteorology,121:55–67.

    Article  Google Scholar 

  • Arora, V.K., 2003. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models.Agricultural and Forest Meteorology,118:21–47.

    Article  Google Scholar 

  • Baldocchi, D.D., Wilson, K.B., 2001. Modelling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales.Ecological Modelling,142:155–184.

    Article  CAS  Google Scholar 

  • Bosveld, F.C., Bouten, W., 2001. Evaluation of transpiration models with observations over a Douglas-fir forest.Agricultural and Forest Meteorology,108:247–264.

    Article  Google Scholar 

  • Demuth, H., Beale, M., 1994. Neural Network Toolbox for Use with MATLAB, Natick, The Math Works, Inc.

    Google Scholar 

  • Duan, K., Keerthi, S., Poo, A., 2001. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters (Tech. Rep. No. Control Division Technical Report CD-01-11). Department of Mechanical Engineering, National University of Singapore.

  • Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H.,et al., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange.Agricultural and Forest Meteorology,107:43–69.

    Article  Google Scholar 

  • Flerchinger, G.N., Pierson, F.B., 1991. Modelling plant canopy effects on variability of soil temperature and water.Agric. and Forest Meteor,56:227–246.

    Article  Google Scholar 

  • Flerchinger, G.N., Hanson, C.L., Wight, J.R., 1996. Modelling of evapotranspiration and surface energy budgets across a watershed.Water Resour. Res.,32(8):2539–2548.

    Article  Google Scholar 

  • Franks, S.W., Beven, K., 1999. Conditioning a multiple patch SVAT model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data.Water Resour. Res.,35:2751–2761.

    Article  Google Scholar 

  • Franks, S.W., Beven, K.J., Quinn, P.F., Wright, I.R., 1997. On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: Equifinality and the problem of robust calibration.Agric. Forest Meteor,86:63–75.

    Article  Google Scholar 

  • Granier, A., Ceschia, E., Damesin, C., Dufrêne, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D.,et al. 2000a. The carbon balance of a young beech forest.Funct. Ecol.,14:312–325.

    Article  Google Scholar 

  • Granier, A., Biron, P., Lemoine, D., 2000b. Water balance, transpiration and canopy conductance in two beech stands.Agric. Forest Meteor.,100:291–308.

    Article  Google Scholar 

  • Huntingford, C., Cox, P.M., 1997. Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment.Ecol. Model.,97:217–246.

    Article  Google Scholar 

  • Jemwa, G.T., Aldrich, C., 2003. Identification of Chaotic Process Systems with Least Squares Support Vector Machines. Neural Networks. Proceedings of the International Joint Conference on Volume 3, p. 20–24.

  • Kelliher, F.M., Hollinger, D.Y., Schulze, E.D., Vygodskaya, N.N., Byers, J.N., Hunt, J.E., McSeveny, T.M., Milukova, L., Sogachev, A.F., Varlagin, A.V.,et al., 1997. Evaporation from an eastern Siberian larch forest.Agric. Forest Meteor.,85:135–147.

    Article  Google Scholar 

  • Kosko, B., 1992. Neural Networks and Fuzzy System. A Dynamical Systems Approach to Machine Intelligence. New Jersey, Prentice-Hall, Inc, Englewood Cliffs., p. 449.

    Google Scholar 

  • Mo, X.G., Beven, K., 2004. Multi-objective parameter conditioning of a three-source wheat canopy model.Agricultural and Forest Meteorology,122:39–63.

    Article  Google Scholar 

  • Pelckmans, K., Suykens, J.A.K., Van Gestel T., De Brabanter, J., Lukas, L., Hamers, B., Moor, B., Vandewalle, J., 2002. A Matlab/C Toolbox for Least Squares Support Vector Machines. Internal Report 02-44. ESAT-SISTA and K.U. Leuven, Belgium.

    Google Scholar 

  • Schulz, H., Härtling, S., 2003. Vitality analysis of Scots pines using a multivariate approach.Forest Ecology and Management,186:73–846.

    Article  Google Scholar 

  • Suykens, J.A.K., 2001. Nonlinear Modelling and Support Vector Machines. Budapest, Hungary. IEEE Instruments and Measurement Technology Conference.

  • Thissen, U., van Brakel, R., de Weijer, A.P., Melssen, W.J., Buydens, L.M.C., 2003. Using support vector machines for time series prediction.Chemometrics and Intelligent Laboratory Systems,69:35–49.

    Article  CAS  Google Scholar 

  • Unland, H.E., Houser, P.R., Shuttleworth, W.J., Yang, Z.L., 1996. Surface flux measurement and modelling at a semi-arid Sonoran Desert site.Agricultural and Forest Meteorology,82:119–153.

    Article  Google Scholar 

  • Valentini, R., Deangelis, P., Matteucci, G., Monaco, R., Dore, S., Mugnozza, G.E.S., 1996. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere.Global Change Biol.,2:199–208.

    Article  Google Scholar 

  • van Wijk, M.T., Bouten, W., 1999. Water and carbon fluxes above European coniferous forests modeled with artificial neural networks.Ecological Modelling,20:181–197.

    Article  Google Scholar 

  • Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York, p. 311.

    Book  Google Scholar 

  • Vapnik, V., 1998. Statistical Learning Theory. John Wiley and Sons, New York.

    Google Scholar 

  • Vapnik, V., 1999. The Nature of Statistical Learning Theory. 2nd Ed., Springer-Verlag, New York.

    Google Scholar 

  • Witten, I. H., Frank, E., 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Diego, CA: Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhong.

Additional information

Project supported by the National Science Fund for Outstanding Youth Overseas (No. 40328001) and the Key Research Plan of the Knowledge Innovation Project of the Institute of Geographic Sciences and Natural Reseources, Chinese Academy of Sciences (No. KZCXI-SW-01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Yu, Q., Li, J. et al. Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland. J Zheijang Univ Sci B 6, 491–495 (2005). https://doi.org/10.1631/jzus.2005.B0491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2005.B0491

Key words

CLC number

Navigation