Skip to main content
Log in

An approach for evaluating the impact of an intermittent renewable energy source on transmission expansion planning

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment cost of the transmission line and the operating cost of conventional generators. A method to select suitable scenarios representing the intermittent renewable energy generation and loads is proposed to obtain robust expansion planning for all possible scenarios. A meta-heuristic algorithm called adaptive tabu search (ATS) is employed in the proposed TEP. ATS iterates between the main problem, which minimizes the investment and operating costs, and the subproblem, which minimizes the cost of power generation from conventional generators and curtailments of renewable energy generation and loads. The subproblem is solved by nonlinear programming (NLP) based on an interior point method. Moreover, the impact of an intermittent renewable energy source on TEP was evaluated by comparing expansion planning with and without consideration of a renewable energy source. The IEEE Reliability Test System 79 (RTS 79) was used for testing the proposed method and evaluating the impact of an intermittent renewable energy source on TEP. The results show that the proposed robust optimization approach provides a more robust solution than other methods and that the impact of an intermittent renewable energy source on TEP should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari, T., Heidarization, M., Siab, M.S., et al., 2012. Towards integrated planning: simultaneous transmission and substation expansion planning. Electr. Power Syst. Res., 86:131–139. [doi:10.1016/j.epsr.2011.12.012]

    Article  Google Scholar 

  • Alizadeh, B., Dehghan, S., Amjady, N., et al., 2013. Robust transmission system expansion considering planning uncertainties. IET Gener. Transm. Distrib., 7(11):1318–1331. [doi:10.1049/iet-gtd.2012.0137]

    Article  Google Scholar 

  • Asadamongkol, S., Eua-Arporn, B., 2010. Benders Decomposition Based Method for Multistage Transmission Expansion Planning with Security Constraints. PhD Thesis, Department of Electrical Engineering, Chulalongkorn University, Bangkok.

    Google Scholar 

  • Bahiense, L., Oliveira, G.C., Pereira, M., et al., 2001. A mixed integer disjunctive model for transmission network expansion. IEEE Trans. Power Syst., 16(3):560–565. [doi:10.1109/59.932295]

    Article  Google Scholar 

  • Bent, R., Berscheid, A., Loren Toole, G., 2011. Generation and transmission expansion planning for renewable energy integration. Power Systems Computation Conf.

    Google Scholar 

  • Bertsimas, D., Litvinov, E., Sun, X.A., et al., 2013. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst., 28(1): 52–63. [doi:10.1109/TPWRS.2012.2205021]

    Article  Google Scholar 

  • Cebeci, M.E., Eren, S., Tor, O.B., et al., 2011. Transmission and substation expansion planning using mixed integer programming. North American Power Symp., p.1–5. [doi:10.1109/NAPS.2011.6024851]

    Google Scholar 

  • Chanda, R.S., Bhattacharjee, P.K., 1994. Application of computer software in transmission expansion planning using variable load structure. Electr. Power Syst. Res., 31(1):13–20. [doi:10.1016/0378–7796(94)90024–8]

    Article  Google Scholar 

  • da Silva, E.L., Ortiz, J.M.A., Oliviera, G.C., et al., 2001. Transmission network expansion planning under a tabu search approach. IEEE Trans. Power Syst., 16(1):62–68. [doi:10.1109/59.910782]

    Article  Google Scholar 

  • Department of Alternative Energy Development and Efficiency (DEDE), 2012. Alternative Energy Development Plan: AEDP 2012–2021. Ministry of Energy, Thailand.

    Google Scholar 

  • Dusonchet, Y.P., El-Abiad, A.H., 1973. Transmission planning using discrete dynamic optimization. IEEE Trans. Power Appar. Syst., PAS-92(4):1358–1371. [doi:10.1109/TPAS.1973.293543]

    Article  Google Scholar 

  • Ekwue, A.O., Cory, B.J., 1984. Transmission system expansion planning by interactive methods. IEEE Trans. Power Appl. Syst., PAS-103(7):1583–1591. [doi:10.1109/TPAS.1984.318637]

    Article  Google Scholar 

  • Escobar, A.H., Gallego, R.A., Romero, R., 2004. Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst., 19(2):735–744. [doi:10.1109/TPWRS.2004.825920]

    Article  Google Scholar 

  • Fuchs, I., Völler, S., Gjengedal, T., 2011. Improved method for integrating renewable energy sources into the power system of northern Europe: transmission expansion planning for wind power integration. 10th Int. Conf. on Environment and Electrical Engineering, p.1–4. [doi:10.1109/EEEIC.2011.5874642]

    Google Scholar 

  • Grainger, J., William, S.J., 1994. Power System Analysis. McGraw Hill, Singapore.

    Google Scholar 

  • Hajimiragha, A.H., Cañizares, C.A., Fowler, M.W., et al., 2011. A robust optimization approach for planning the transition to plug-in hybrid electric vehicles. IEEE Trans. Power Syst., 26(4):2264–2274. [doi:10.1109/TPWRS.2011.2108322]

    Article  Google Scholar 

  • Jabr, R.A., 2013. Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans. Power Syst., 28(4):4558–4567. [doi:10.1109/TPWRS.2013.2267058]

    Article  Google Scholar 

  • Katdee, A., 2010. Tabu Searching. Rangsit University, Thailand.

    Google Scholar 

  • Khatib, H., 2003. Economic Evaluation of Projects in the Electricity Supply Industry. The Institution of Engineering and Technology, London, England.

    Book  Google Scholar 

  • Latorre, G., Cruz, R.D., Areiza, J.M., et al., 2003. Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst., 18(2):938–946. [doi:10.1109/TPWRS.2003.811168]

    Article  Google Scholar 

  • Leite da Silva, A.M., Fonseca Manso, L.A., de Sousa Sales, W., et al., 2012. Chronological power flow for planning transmission systems considering intermittent sources. IEEE Trans. Power Syst., 27(4):2314–2322. [doi:10.1109/TPWRS.2012.2203830]

    Article  Google Scholar 

  • Monticelli, A., Santos, A.Jr., Pereira, M.V.F., et al., 1982. Interactive transmission network planning using a leasteffort criterion. IEEE Trans. Power Appar. Syst., PAS-101(10):3919–3925. [doi:10.1109/TPAS.1982.317043]

    Article  Google Scholar 

  • Mori, H., Sone, Y., 2001. A parallel tabu search based approach to transmission network expansion planning. IEEE Porto Power Tech Conf. [doi:10.1109/PTC.2001.964744]

    Google Scholar 

  • Muñoz, C., Sauma, E., Contreras, J., et al., 2012. Impact of high wind power penetration on transmission network expansion planning. IET Gener. Transm. Distrib., 6(12): 1281–1291. [doi:10.1049/iet-gtd.2011.0552]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2014a. A chaotic-based big bang–big crunch algorithm for solving global optimization problems. Neur. Comput. Appl., 25(6):1329–1335. [doi:10.1007/s00521–014-1613–1]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2014b. Optimal setting of TCSCs in power systems using teaching-learning-based optimisation algorithm. Neur. Comput. Appl., 26(5):1249–1256. [doi:10.1007/s00521–014-1791-x]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2015a. Brainstorm optimisation algorithm (BSOA): an efficient algorithm for finding optimal location and setting of FACTS devices in electric power. Int. J. Electr. Power Energy Syst., 69:48–57. [doi:10.1016/j.ijepes.2014.12.083]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2015b. Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput., 26:523–530. [doi:10.1016/j.asoc.2014.10.010]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2015c. Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int. J. Electr. Power Energy Syst., 64:771–784. [doi:10.1016/j.ijepes.2014.07.058]

    Article  Google Scholar 

  • Rezaee Jordehi, A., 2015d. Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl. Soft Comput., 26:401–417. [doi:10.1016/j.asoc.2014.10.026]

    Article  Google Scholar 

  • Rider, M.J., Garcia, A.V., Romero, R., 2007. Power system transmission network expansion planning using AC model. IET Gener. Transm. Distrib., 1(5):731–742. [doi:10.1049/iet-gtd:20060465]

    Article  Google Scholar 

  • Romero, R., Gallego, R.A., Monticelli, A., 1996. Transmission system expansion planning by simulated annealing. IEEE Trans. Power Syst., 11(1):364–369. [doi:10.1109/59.486119]

    Article  Google Scholar 

  • Saric, A.T., Stankovic, A.M., 2009. A robust algorithm for volt/var control. IEEE Power Systems Conf. and Exposition, p.1–8. [doi:10.1109/PSCE.2009.4840211]

    Google Scholar 

  • Sepasian, M.S., Seifi, H., Foroud, A.A., et al., 2006. A new approach for substation expansion planning. IEEE Trans. Power Syst., 21(2):997–1004. [doi:10.1109/TPWRS.2006.873406]

    Article  Google Scholar 

  • Stoll, H.G., 1989. Least-Cost Electric Utility Planning. John Wiley & Sons, New York, United States.

    Google Scholar 

  • Sullivan, W.G., Wicks, E.M., Luxhoj, J.T., 2003. Engineering Economy. Pearson Education, New Jersey, USA.

    Google Scholar 

  • University of York, 2004. Orthogonal Arrays (Taguchi Designs). Available from http://www.york.ac.uk/depts/maths/tables/orthogonal.htm [Accessed on June 20, 2014].

    Google Scholar 

  • Youssef, H.K., Hackam, R., 1989. New transmission planning model. IEEE Trans. Power Syst., 4(1):9–18. [doi:10.1109/59.32451]

    Article  Google Scholar 

  • Yu, H., Rosehart, W.D., 2012. An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties. IEEE Trans. Power Syst., 27(4):1808–1817. [doi:10.1109/TPWRS.2012.2194517]

    Article  Google Scholar 

  • Yu, H., Chung, C.Y., Wong, K.P., et al., 2009. A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties. IEEE Trans. Power Syst., 24(3):1568–1576. [doi:10.1109/TPWRS.2009.2021202]

    Article  Google Scholar 

  • Yu, H., Chung, C.Y., Wong, K.P., 2011. Robust transmission network expansion planning method with Taguchi’s orthogonal array testing. IEEE Trans. Power Syst., 26(3): 1573–1580. [doi:10.1109/TPWRS.2010.2082576]

    Article  Google Scholar 

  • Zahedi, A., 2012. Performance evaluation of wind turbine using Monte Carlo method and turbine power curve. Int. Power and Energy Conf., p.161–165. [doi:10.1109/ASSCC.2012.6523257]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surachai Chaitusaney.

Additional information

Project supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and the National Research University Project, Office of Higher Education Commission (No. WCU-039-EN-57)

ORCID: Rongrit CHATTHAWORN, http://orcid.org/0000-0001-9258-7141

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatthaworn, R., Chaitusaney, S. An approach for evaluating the impact of an intermittent renewable energy source on transmission expansion planning. Frontiers Inf Technol Electronic Eng 16, 871–882 (2015). https://doi.org/10.1631/FITEE.1500049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500049

Keywords

Document code

CLC number

Navigation