Skip to main content
Log in

Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The objective of the investigation was to study the application of ultrasound reactor technology (USRT) as a disinfectant for reduction of fungi from sewage effluent. Fungi are carbon heterotrophs that require preformed organic compounds as carbon sources. USRT is an attractive means to improve water quality because of the system simplicity and no production of toxic by-products. An ultrasound reactor produces strong cavitation in aqueous solution causing shock waves and reactive free radicals by the violent collapse of the cavitation bubble. These effects should contribute to the physical disruption of microbial structures and inactivation of organisms. There was significant reduction in fungal growth, with decreased fungal growth with increasing USRT. In this study, ultrasound irradiation at a frequency of 42 kHz was used to expose suspensions of fungi to evaluate the disinfection efficacy of the ultrasound reactor. Also, this study showed that in this system more than 99% reduction of sewage fungi was achieved after 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anon, 2000. Water Quality Criteria, Report of the National Technical Advisory Committee to the Secretary of the Interior. Federal Water Pollution Control Administration, No. 25, Washington DC, USA.

  • APHA (American Public Health Association), 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington DC, USA.

    Google Scholar 

  • Deinega, E.Y., 1986. Change in biophysical properties of microorganisms in the process of water disinfection. Water Chemistry and Technology, 8(2):132–134.

    Google Scholar 

  • Everett, W.C., 1978. Ultrasonic disinfection system. US Patent, No. 4,086,057.

  • Gelate, P., Hodnett, M., Zeqiri, B., 2000. Supporting Infrastructure and Early Measurements. National Physical Laboratory Report, Teddington, Middlesex, UK, p.2–11.

  • Gong, C., Hart, D.P., 1998. Ultrasound induced cavitation and sonochemical yields. The Acoustic Society of America, 104:1–16.

    Google Scholar 

  • Hua, I., Hoffmann, M.R., 1997. Optimization of ultrasonic irradiation as advanced oxidation technology. Environ. Sci. Technol., 31(8):2237–2243. [doi:10.1021/es960717f]

    Article  CAS  Google Scholar 

  • Hua, I., Thompson, J.E., 2000. Inactivation of E. coli by sonication at discrete ultrasonic frequencies. Water Res., 34(15):3888–3893. [doi:10.1016/S0043-1354(00)00121-4]

    Article  CAS  Google Scholar 

  • Joyce, E., Mason, T.J., Phull, S.S., Lorimer, J.P., 2002. The development and evaluation of ultrasound for the treatment of bacterial suspension. Ultrasonics Sonochemistry, 10(6):315–318. [doi:10.1016/S1350-4177(03)00101-9]

    Article  Google Scholar 

  • Kalumuk, K.M., 2003. Remediation and Disinfection of Water Using Jet Generated Cavitation. 5th International Symposium on Cavitation (CAV2003), Osaka, Japan.

  • Laborde, J.L., 1998. Acoustic cavitation field prediction at low and high frequency ultrasounds. Ultrasonics, 36(1–5): 581–587. [doi:10.1016/S0041-624X(97)00106-6]

    Article  CAS  Google Scholar 

  • Lauterborn, W., Ohl, C.D., 1997. Cavitation bubble dynamics. Ultrasonics Sonochemistry, 4(2):65–75. [doi:10.1016/S1350-4177(97)00009-6]

    Article  PubMed  CAS  Google Scholar 

  • Neppiras, E.A., 1980. Acoustic cavitation. Phys. Rep., 61(3): 159–251. [doi:10.1016/0370-1573(80)90115-5]

    Article  Google Scholar 

  • Petrier, C., 1992. Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. J. Am. Chem. Soc., 114(8):3148–3150. [doi:10.1021/ja00034a077]

    Article  CAS  Google Scholar 

  • Phull, S.S., Newman, A.P., Lorimer, J.P., Pollet, T.J., Mason, T.J., 1997. The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2):157–164. [doi:10.1016/S1350-4177(97)00029-1]

    Article  PubMed  CAS  Google Scholar 

  • Scherba, G., Weigel, R.M., Obrien, W.D., 1991. Quantitative assessment of the germicidal efficacy of ultrasonic energy. App. Environ. Microbiol., 57(7):2079–2084.

    CAS  Google Scholar 

  • Suslick, K.S., 1994. The Chemistry of Ultrasound. Chicago, Encyclopedia Britannica, p.138–155.

    Google Scholar 

  • Suslick, K.S., Crum, L.A., 1997. Sonochemistry and Sonoluminescence in Encyclopedia of Acoustics, Vol. 1. Wiley-Interscience, New York, p.271–282.

    Google Scholar 

  • Suslick, K.S., Price, G., 1999. Applications of ultrasound to materials chemistry. Annu. Rev. Matl. Sci., 29(1):295–326. [doi:10.1146/annurev.matsci.29.1.295]

    Article  CAS  Google Scholar 

  • Tsukamoto, I., Yim, B., Stavarache, C.E., Furuta, M., Hashiba, K., Maeda, Y., 2004. Inactivation of saccharomyces by ultrasonic irradiation. Ultrasonics Sonochem., 11(2): 61–65. [doi:10.1016/S1350-4177(03)00135-4]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the Medical Sciences/University of Tehran, I.R. Iran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghani, M.H., Mahvi, A.H., Jahed, G.R. et al. Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage. J. Zhejiang Univ. - Sci. B 8, 493–497 (2007). https://doi.org/10.1631/jzus.2007.B0493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0493

Key words

CLC number

Navigation