Skip to main content
Log in

Research and development of fringe projection-based methods in 3D shape reconstruction

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, K.Y., Benhabib, B., 2003. A hybrid scheme incorporating stereo-matching and shape-from-shading for spatial object recognition. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(11):1533–1542. [doi:10.1243/095440503771909917]

    Article  Google Scholar 

  • Cusack, R., Huntley, J.M., Goldrein, H.T., 1995. Improved noise-immune phase unwrapping algorithm. Applied Optics, 35(5):781–789.

    Article  Google Scholar 

  • Dougherty, D.J., Selkow, S.M., 2004. The certification of properties of stable marriage. Information Processing Letters, 92(6):275–277. [doi:10.1016/j.ipl.2004.09.006]

    Article  MathSciNet  MATH  Google Scholar 

  • Ghiglia, D.C., Mastin, G.A., Romero, L.A., 1987. Cellularautomata method for phase unwrapping. Journal of Optical Society of American, 4(1):267–280.

    Article  Google Scholar 

  • Gierloff, J.J., 1987. Phase unwrapping by regions. Optical Engineering, 818:2–9.

    Google Scholar 

  • Goldstein, R.M., Zebker, H.A., Werner, C.L., 1988. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Science, 23(4):713–720.

    Article  Google Scholar 

  • Huang, M.J., Lai, C., 2002. Phase unwrapping based on a parallel noise-immune algorithm. Optics and Laser Technology, 34(6):457–464. [doi:10.1016/S0030-3992(02)00042-7]

    Article  Google Scholar 

  • Itoh, K., 1982. Analysis of the phase unwrapping algorithm. Applied Optics, 21(14):2470–2486.

    Article  Google Scholar 

  • Judge, T.R., Bryanstoncross, P.J., 1994. A review of phase unwrapping techniques in fringe analysis. Optics and Lasers in Engineering, 21(4):199–239. [doi:10.1016/0143-8166(94)90073-6]

    Article  Google Scholar 

  • Lai, X.M., Li, Z.Q., Huang, T., Zeng, Z.P., 2001. A study of a reverse engineering system based on vision sensor for free-form surfaces. Computers and Industrial Engineering, 40(3):215–227. [doi:10.1016/S0360-8352(01)00022-5]

    Article  Google Scholar 

  • Magnus, M.H., Kazuo, I., Shuichi, M., Hiroki, Y., 2004. Randomized approximation of the stable marriage problem. Theoretical Computer Science, 325(3):439–465. [doi:10.1016/j.tcs.2004.02.045]

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, F.A.R., Garcia-bermejo, J.G., Zalama, E., Peran, J.R., 2003. An optimized strategy for automatic optical scanning of objects in reverse engineering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(8):1167–1171.

    Article  Google Scholar 

  • Pearson, D., 2005. A polynomial-time algorithm for the change-making problem. Operations Research Letters, 33(3):231–234. [doi:10.1016/j.orl.2004.06.001]

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan, V., Liu, H.C., Halioua, M., 1995. Automated phase-measuring profilometry: a phase mapping approach. Applied Optics, 24(2):185–187.

    Article  Google Scholar 

  • Stetson, K.A., Wahid, J., Gauthier, P., 1997. Noise-immune phase unwrapping by use of calculated wrap regions. Applied Optics, 36(20):4830–4838.

    Article  Google Scholar 

  • Takeda, M., Mutoh, K., 1983. Fourier transform profilometry for the automatic measurement of 3D object shapes. Applied Optics, 22(24):3977–3982.

    Article  Google Scholar 

  • Takeda, M., Abe, T., 1996. Phase unwrapping by a maximum cross-amplitude spanning tree algorithm: A comparative study. Optical Engineering, 35(8):2345–2351. [doi:10.1117/1.600810]

    Article  Google Scholar 

  • Takeda, M., Ina, H., Koboyashi, S., 1982. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of Optical Society of America, 72(1):156–160.

    Article  Google Scholar 

  • Tang, S., Hung, Y., 1990. Fast profilometer for the automatic measurement of 3-D object shapes. Applied Optics, 29(20):3012–3018.

    Article  Google Scholar 

  • Wu, P.F., Yu, F.H., 1993. Analysis technique for the measurement of a three-dimensional object shape. Applied Optics, 32(5):737–742.

    Article  Google Scholar 

  • Xu, J., Wang, Y., 1998. 2D Fourier Transform and Automatic Reference Grating Image Method for Optical Measurement of 3D Surface Shapes. SPIE’s International Symposium on Optical Science, Engineering and Instrumentation. San Diego.

  • Yamaguchi, L., Ohta, S., Kato, J., 2001. Surface contouring by phase-shifting digital holography. Optics and Lasers in Engineering, 36(5):417–428. [doi:10.1016/S0143-8166(01)00069-0]

    Article  Google Scholar 

  • Yan, J., De, S.L., 2003. Reverse Engineering of Sheet Metal Parts Using Machine Vision. Proc. the ASME Design Engineering Technical Conference, p. 1085–1095.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Qing-jin.

Additional information

Project (No. 59965003) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Ls., Peng, Qj. Research and development of fringe projection-based methods in 3D shape reconstruction. J. Zhejiang Univ. - Sci. A 7, 1026–1036 (2006). https://doi.org/10.1631/jzus.2006.A1026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A1026

Key words

CLC number

Navigation