Skip to main content
Log in

Ultrasonic pulse velocity test for non-destructive investigations of historical masonries: an experimental study of the effect of frequency and applied load on the response of a limestone

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The ultrasonic pulse velocity (UPV) method can be conveniently used for non-destructive testing of physical–mechanical properties of the stones within historical masonry, as well as to check the state of damage and microcracking. Before to proceed with in situ measurements, it is important to assess the contribution that both intrinsic characteristics of the stones and external factors may give to the ultrasonic response. In this work the effect of different wave frequencies, sample geometry and application of a compression load on the response of a natural stone to UPV test has been investigated. An extensive experimental campaign in laboratory conditions was carried out on a soft limestone, used in the historical building heritage of the Southern Italy. A negligible UPV dispersion was found at the used frequencies of 1 MHz, 120 and 55 kHz when a compression load was not applied; the measured velocities were found to be influenced by the stone inhomogeneity rather than by the sample size. They showed a slight decrease and still negligible dispersion under load up to the visible damage. Dispersion increased with the cracking progression. This indicates that enhanced capability of UPV, in checking material quality and damage conditions, can be obtained by combining the use of different wave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Binda L, Saisi A, Tiraboschi C (2000) Investigation procedures for the diagnosis of historic masonries. Constr Build Mater 14:199–233

    Article  Google Scholar 

  2. Meola C, Di Maio R, Roberti N, Carlomagno GM (2005) Application of infrared thermography and geophysical methods for defect detection in architectural structures. Eng Fail Anal 12:875–892

    Article  Google Scholar 

  3. Carpinteri A, Lacidogna G (2007) Damage evaluation of three masonry towers by acoustic emission. Eng Struct 29:1569–1579

    Article  Google Scholar 

  4. Bosiljkova V, Uranjekb M, Zarnic R, Bokan-Bosiljkov V (2010) An integrated diagnostic approach for the assessment of historic masonry structures. J Cult Herit 11:239–249

    Article  Google Scholar 

  5. Padura AB, Sevilla JB, Navarro JG (2011) Bearing capacity diagnosis of Santiago church (Jerez de la Frontera, Spain). Constr Build Mater 25:2519–2527

    Article  Google Scholar 

  6. Faella G, Frunzio G, Guadagnuolo M et al (2012) The church of the nativity in Bethlehem: non-destructive tests for the structural knowledge. J Cult Herit 13:27–41

    Article  Google Scholar 

  7. Antonaci P, Formia A, Gliozzi AS, Scalerandi M (2013) Diagnostic application of non- linear ultrasonics to characterize degradation by expansive salts in masonry systems. NDT & E Int 55:57–63

    Article  Google Scholar 

  8. Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994

    Article  Google Scholar 

  9. Grinzato E, Marinetti S, Bison PG et al (2004) Comparison of ultrasonic velocity and IR thermography for the characterization of stones. Infrared Phys Technol 46:63–68. doi:10.1016/j.infrared.2004.03.009

    Article  Google Scholar 

  10. Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875

    Article  Google Scholar 

  11. Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46:341–348. doi:10.1016/j.ultras.2007.05.003

    Article  Google Scholar 

  12. Cobanoglu I, Celik SB (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498. doi:10.1007/s10064-008-0158-x

    Article  Google Scholar 

  13. Vasconcelos G, Lourenço PB, Alves CAS, Pamplona J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48:453–466

    Article  Google Scholar 

  14. Aliabdo AAE, Elmoaty AEMA (2012) Reliability of using non-destructive tests to estimate compressive strength of building stones and bricks. Alex Eng J 51:193–203. doi:10.1016/j.aej.2012.05.004

    Article  Google Scholar 

  15. Ludovico-Marques M, Chastre C, Vasconcelos G (2012) Modelling the compressive mechanical behavior of granite and sandstone historical building stones. Constr Build Mater 28:372–381. doi:10.1016/j.conbuildmat.2011.08.083

    Article  Google Scholar 

  16. Calia A, Mecchi A., Luprano V. et al (1999) Micro-seismic tests in the analysis and characterization of high porosity stone materials. In: Proceedings of 6th international conference on non-destructive testing and microanalysis for the diagnostics and conservation of the cultural and environmental heritage. Rome, Italy,

  17. Mincarone P, Montagna G, Rota P, et al (1999) Impact and ultrasonic tests to investigate the process and the effectiveness of repair for masonry walls. In: Proceedings of 6th international conference on non-destructive testing and microanalysis for the diagnostics and conservation of the cultural and environmental heritage. Rome Italy,

  18. Vasanelli E, Colangiuli D, Calia A et al (2015) Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 60:33–40. doi:10.1016/j.ultras.2015.02.010

    Article  Google Scholar 

  19. UNI EN 14579 (2005) Natural stone test methods—Determination of sound speed propagation

  20. ASTM D2845-08 (2008) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock

  21. Shah SP, Chandra S (1970) Mechanical behavior of concrete examined by ultrasonic measurements. J Mater 5:550–563

    Google Scholar 

  22. Popovics S, Rose JL, Popovics JS (1990) The behavior of ultrasonic pulse in concrete. Cem Concr Res 20:259–270. doi:10.1016/0008-8846(90)90079-D

    Article  Google Scholar 

  23. Landis EN, Shah SP (1995) Frequency-dependent stress wave attenuation in cement-based materials. J Eng Mech 121:737–743. doi:10.1061/(ASCE)0733-9399(1995)121:6(737)

    Article  Google Scholar 

  24. Philippidis TP, Aggelis DG (2005) Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43:584–595. doi:10.1016/j.ultras.2004.12.001

    Article  MATH  Google Scholar 

  25. Shiotani T, Aggelis DG (2009) Wave propagation in cementitious material containing artificial distributed damage. Mater Struct 42:377–384. doi:10.1617/s11527-008-9388-4

    Article  Google Scholar 

  26. Aggelis DG (2013) Wave propagation through engineering materials; assessment and monitoring of structures through non-destructive techniques. Mater Struct 46:519–532. doi:10.1617/s11527-013-0020-x

    Article  Google Scholar 

  27. El Azhari H, El Amrani El, El Hassani IE (2013) Effect of the number and orientation of fractures on the P-wave velocity diminution: application on the building stones of the Rabat Area (Morocco). Geomaterials 3:71–81. doi:10.4236/gm.2013.33010

    Article  Google Scholar 

  28. Shah A, Ribakov Y, Zhang Ch (2013) Efficiency and sensitivity of linear and non-linear ultrasonics to identifying micro and macro-scale defects in concrete. Mater Des 50:905–916. doi:10.1016/j.matdes.2013.03.079

    Article  Google Scholar 

  29. Berthaud Y (1991) Damage measurements in concrete via an ultrasonic technique. Part I Experiment. Cem Concr Res 21:73–82. doi:10.1016/0008-8846(91)90033-E

    Article  Google Scholar 

  30. Popovics S, Popovics JS (1991) Effect of stresses on the ultrasonic pulse velocity in concrete. Mater Struct 24:15–23

    Article  Google Scholar 

  31. Prassianakis IN, Prassianakis NI (2004) Ultrasonic testing of non-metallic materials: concrete and marble. Theor Appl Fract Mech 42:191–198. doi:10.1016/j.tafmec.2004.08.007

    Article  Google Scholar 

  32. Lillamand I, Chaix JF, Ploix MA, Garnier V (2010) Acoustoelastic effect in concrete material under uni-axial compressive loading. NDT & E Int 43:655–660. doi:10.1016/j.ndteint.2010.07.001

    Article  Google Scholar 

  33. Suaris W, Fernando V (1987) Detection of crack growth in concrete from ultrasonic intensity measurements. Mater Struct 20:214–220

    Article  Google Scholar 

  34. Quasrawi HY, Marie IA (2003) The use of USPV to anticipate failure in concrete under compression. Cem Concr Res 33:2017–2021. doi:10.1016/S0008-8846(03)00218-7

    Article  Google Scholar 

  35. Antonaci P, Bruno CLE, Gliozzi AS, Scalerandi M (2010) Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem Concr Res 40:1106–1113

    Article  MATH  Google Scholar 

  36. Scott TE, Ma Q, Roegiers JC (1993) Acoustic velocity changes during shear enhanced compaction of sandstone. Int J Rock Mech Min Sci Geomech Abstr 30:763–769

    Article  Google Scholar 

  37. Ayling MR, Meredith PG, Murrel SAF (1995) Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, I. Elastic-wave propagation measurements on dry rocks. Tectonophysics 245:205–221

    Article  Google Scholar 

  38. Shubnel A, Nishizawa O, Masuda K et al (2003) Velocity measurements and crack density determination during wet triaxial experiments on Oshima and Toki granites. Pure Appl Geophys 160:869–887

    Article  Google Scholar 

  39. Stanchits S, Vinciguerra S, Dresen G (2006) Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl Geophys 163:974–993. doi:10.1007/s00024-006-0059-5

    Article  Google Scholar 

  40. Petružálek M., Vilhelm J., Lokajíček T., Rudajev V. (2008) Changes of anisotropy of p-wave velocity propagation during deformation process of rock samples. In: Proceedings of 28-European Conferance on Acustic emission Testing. Krakow, pp 130–135

  41. Blake OO, Faulkner DR, Rietbrock A (2013) The effect of varying damage history in crystalline rocks on the P- and S-wave velocity under hydrostatic confining pressure. Pure Appl Geophys 170:493–505. doi:10.1007/s00024-012-0550-0

    Article  Google Scholar 

  42. Stroisz M, Fjær E (2013) Tracing causes for stress sensitivity of elastic wave velocities in dry Castlegate sandstone. Geophys J Int 192:137–147. doi:10.1093/gji/ggs029

    Article  Google Scholar 

  43. Chen J, Xu Z, Yu Y, Yao Y (2014) Experimental characterization of granite damage using nonlinear ultrasonic techniques. NDT &E Int 67:10–16. doi:10.1016/j.ndteint.2014.06.005

    Article  Google Scholar 

  44. Sun Q, Zhu S (2014) Wave velocity and stress/strain in rock brittle failure. Environ Earth Sci 72:861–866. doi:10.1007/s12665-013-3009-4

    Article  Google Scholar 

  45. Calia A, Tabasso ML, Mecchi AM, Quarta G (2013) The study of stone for conservation purposes: Lecce stone (southern Italy). In: Cassar J, Winter MG, Marker BR et al (eds) Stone in historic buildings: characterization and performance. Geological Society, Special Publications, London, p 391

    Google Scholar 

  46. Aggelis DG, Polyzos D, Philippidis TP (2005) Wave dispersion and attenuation in fresh mortar: theoretical predictions vs experimental results. J Mech Phys Solids 53:857–883. doi:10.1016/j.jmps.2004.11.005

    Article  MATH  Google Scholar 

  47. Aggelis DG (2011) Damage characterization of inhomogeneous materials: experiments and numerical simulations of wave propagation. Strain 47:525–533

    Article  Google Scholar 

  48. Muller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics 75:147–164. doi:10.1190/1.3463417

    Article  Google Scholar 

  49. Ulm FJ, Constantidines G, Heukamp FH (2004) Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Mater Struct 37:43–58

    Article  Google Scholar 

  50. Fan LF, Wong LNY, Ma GW (2013) Experimental investigation and modeling of viscoelastic behavior of concrete. Constr Build Mater 48:814–821. doi:10.1016/j.conbuildmat.2013.07.010

    Article  Google Scholar 

  51. Murai Y (2007) Scattering attenuation, dispersion and reflection of SH waves in two-dimensional elastic media with densely distributed cracks. Geophys J Int 168:211–223. doi:10.1111/j.1365-246X.2006.03149.x

    Article  Google Scholar 

  52. Chaix JF, Rossat M, Garnier V, Corneloup G (2012) An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete. J Acoust Soc Am 131:4481–4490. doi:10.1121/1.4712022

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out in the frame of the A.I.Te.C.H. (Applied Innovation Technologies for Diagnosis and Conservation of Built Heritage) Network of research laboratories and PRO.ME.TE.O.S. (Advanced Products, Methodologies and Technologies for the Diagnosis and Conservation of Historical Built Heritage) Project and supported by Puglia P.O. 2007–2013 FESR funds. The authors want to tank DRC (Diagnostic Research Company) Italia and Michele Massaccesi for the valuable support during the experiments and for instrument provision, technical instructions and precious assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Calia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanelli, E., Calia, A., Luprano, V. et al. Ultrasonic pulse velocity test for non-destructive investigations of historical masonries: an experimental study of the effect of frequency and applied load on the response of a limestone. Mater Struct 50, 38 (2017). https://doi.org/10.1617/s11527-016-0892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0892-7

Keywords

Navigation