Skip to main content
Log in

Rapid screening tests for supplementary cementitious materials: past and future

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Rapid screening tests for supplementary cementitious materials (SCMs) have been in use for over 150 years. Over the years a multitude of methods have been put forward to predict the strength development of SCM blended mortars and concrete. This paper summarizes and rationalizes the main approaches and then applies them to a selection of materials that cover a broad range of SCMs, both pozzolanic and hydraulic. Included are siliceous fly ash, blast furnace slag, natural pozzolan, metakaolin and an inert quartz filler. The selected test methods are the Chapelle test, the Frattini test, active silica and alumina extractions, a dissolution rate test, and a new calorimetry-based test. The results are compared, interpreted and discussed in view of their aim of predicting the compressive strength development. Finally, a new test method is proposed that relates the cumulative heat of the SCM reaction in a simplified model system to the compressive strength development in standardized mortars. The new method is practical, repeatable and applicable to a wide range of SCMs (both pozzolanic and hydraulic), it furthermore reduces the experiment duration by a factor of 10 and correlates well to the compressive strength development of blended cement mortar bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vicat L (1856) Traité pratique et théorique de la composition des mortiers, ciments et gangues à pouzzolanes et de leurs emploi dans toutes sortes de travaux suivi des moyens d’en apprécier la durée dans les constructions à la mer. Imprimerie Maisonville, Grenoble

    Google Scholar 

  2. Forest J, Demoulian E (1963) Appréciation de l’activité des cendres volantes et pouzzolanes. Rev Matér Constr 577:312–317

    Google Scholar 

  3. Moran WT, Gilliland JL (1949) Summary of methods for determining pozzolanic activity. Am Soc Test Mater Specif Tech Publ 49:109–130

    Google Scholar 

  4. Watt JD, Thorne DJ (1966) Composition and pozzolanic properties of pulverized fuel ashes: Part III. J Appl Chem 16:33–39

    Article  Google Scholar 

  5. Massazza F (1974) Chemistry of pozzolanic additions and mixed cements. In: Proceedings of Congress on the Chemistry of Cement, pp 1–65

  6. Shi C (2001) An overview on the activation of reactivity of natural pozzolans. Can J Civ Eng 28:778–786. doi:10.1139/cjce-28-5-778

    Article  Google Scholar 

  7. Chapelle J (1958) Attaque sulfocalcique des laitiers et pouzzolanes. Rev Matér Constr 512:136–145

    Google Scholar 

  8. Raverdy M, Brivot F, Paillere AM, Dron R (1980) Appréciation de l’activité pouzzolanique des constituants secondaires. Proceedings of 7th International Congress on the Chemistry of Cement, pp IV–3/36–41

  9. Benezet JC, Benhassaine A (1999) The influence of particle size on the pozzolanic reactivity of quartz powder. Powder Technol 103:26–29. doi:10.1016/S0032-5910(99)00010-8

    Article  Google Scholar 

  10. Perraki T, Kakali G, Kontori E (2005) Characterization and pozzolanic activity of thermally treated zeolite. J Therm Anal Calorim 82:109–113. doi:10.1007/s10973-005-0849-5

    Article  Google Scholar 

  11. Tydlitát V, Zákoutský J, Černý R (2014) Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry. Thermochim Acta 582:53–58. doi:10.1016/j.tca.2014.03.003

    Article  Google Scholar 

  12. De Luxan MP, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res 19:63–68

    Article  Google Scholar 

  13. Paya J, Borrachero MV, Monzo J et al (2001) Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem Concr Res 31:41–49

    Article  Google Scholar 

  14. Tashiro C, Ikeda K, Inoue Y (1994) Evaluation of pozzolanic activity by the electric resistance measurement method. Cem Concr Res 24:1133–1139

    Article  Google Scholar 

  15. Frattini N (1949) Richerche sulla calce di idrolisi nelle paste di cimento. Ann di Chim Appl 39:616–620

    Google Scholar 

  16. Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cem Concr Compos 32:121–127. doi:10.1016/j.cemconcomp.2009.10.008

    Article  Google Scholar 

  17. Costa U, Massazza F (1974) Factors affecting the reaction with lime of Italian pozzolans. Il Cemento 3:131–139

    Google Scholar 

  18. Day R, Shi C (1994) Influence of the fineness of pozzolan on the strength of lime-natural pozzolan cement pastes. Cem Concr Res 24:1485–1491

    Article  Google Scholar 

  19. Ludwig U, Schwiete HE (1963) Lime combination and new formations in the trass-lime reactions. ZKG Int 10:421–431

    Google Scholar 

  20. Takemoto K, Uchikawa H (1980) Hydratation des ciment pouzzolaniques. 7th International Congress on the Chemistry of Cement, pp IV–1/3–21

  21. Hanna KM, Afify A (1974) Evaluation of the activity of pozzolanic materials. J Appl Chem Biotechnol 24:751–757

    Article  Google Scholar 

  22. Watt JD, Thorne DJ (1965) Composition and pozzolanic properties of pulverized fuel ashes. Part I-II. J Appl Chem 15:586–604

    Google Scholar 

  23. Massazza F (2001) Pozzolana and pozzolanic cements. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Butterworth-Heinemann, Oxford, pp 471–636

    Google Scholar 

  24. Kumar S, Yudhbir K (2006) A simplified model for prediction of pozzolanic characteristics of fly ash, based on chemical composition. Cem Concr Res 36:1827–1832

    Article  Google Scholar 

  25. Lang E (2002) Blastfurnace cements. In: Bensted J, Barnes P (eds) Structure and performance of cements, 2nd edn. Spon, London, pp 310–323

    Google Scholar 

  26. Durdzinski PT, Snellings R, Dunant CF, Ben Haha M, Scrivener KL (2015) Fly ash as an assemblage of model Ca–Mg–Na-aluminosilicate glasses. Cem Concr Res (in press)

  27. Snellings R (2013) Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: the effect of solution composition on glass dissolution rates. J Am Ceram Soc 96:2467–2475

    Article  Google Scholar 

  28. Langan BW, Wang K, Ward MA (2002) Effects of silica fume and fly ash on heat of hydration of Portland cement. Cem Concr Res 32:1045–1051

    Article  Google Scholar 

  29. Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42:511–525. doi:10.1016/j.cemconres.2011.11.010

    Article  Google Scholar 

  30. Mostafa NY, El-Hemaly SAS, Al-Wakeel EI et al (2001) Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products. I: Silica Fume Dealuminated Kaolin 31:467–474

    Google Scholar 

  31. Silva PS, Glasser FP (1990) Hydration of cements based on metakaolin. Adv Cem Res 3:167–177

    Article  Google Scholar 

  32. Geiker M, Knudsen T (1982) Chemical shrinkage of Portland cement pastes. Cem Concr Res 12:603–610

    Article  Google Scholar 

  33. He C, Makovicky E, Osbaeck B (1994) Thermal stability and pozzolanic activity of calcined kaolin. Appl Clay Sci 9:165–187

    Article  Google Scholar 

  34. Knudsen T (1985) On the possibility of following the hydration of fly ash micorsilica and fine aggregates by means of chemical shrinkage. Cem Concr Res 15:720–722

    Article  Google Scholar 

  35. Snellings R, Bazzoni A, Scrivener K (2014) The existence of amorphous phase in Portland cements: physical factors affecting Rietveld quantitative phase analysis. Cem Concr Res 59:139–146

    Article  Google Scholar 

  36. Schott J, Pokrovsky OS, Oelkers EH (2009) The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev Miner Geochem 70:207–258

    Article  Google Scholar 

  37. Snellings R (2015) Surface chemistry of calcium aluminosilicate glasses. J Am Ceram Soc 98:303–314

    Article  Google Scholar 

  38. Nicoleau L, Nonat A, Perrey D (2013) The di- and tricalcium silicate dissolutions. Cem Concr Res 47:14–30. doi:10.1016/j.cemconres.2013.01.017

    Article  Google Scholar 

  39. Nicoleau L, Schreiner E, Nonat A (2014) Ion-specific effects influencing the dissolution of tricalcium silicate. Cem Concr Res 59:118–138. doi:10.1016/j.cemconres.2014.02.006

    Article  Google Scholar 

  40. Steopoe R (1956) Sur la détermination de l’activité hydraulique des pouzzolanes. Rev Matér Constr 492:210–212

    Google Scholar 

  41. Takashima S (1958) Systematic dissolution of calcium silicate in commercial Portland cement by organic acid dissolution. 16th General Meeting, Japan Cement Engineering Association, pp 12–13

  42. Jambor J (1962) Une nouvelle méthode de détermination de l’activité pouzzolanique. Rev Matér Constr 564:240–256

    Google Scholar 

  43. Rhaask E, Bhaskar MC (1975) Pozzolanic activity of pulverized fuel ash. Cem Concr Res 5:363–376

    Article  Google Scholar 

Download references

Acknowledgments

Hadi Kazemi-Kamyab is warmly thanked for his help in the calorimetry experiments, François Avet generously provided compressive strength data. Financial support by the European Commission under FP7-Marie Curie IEF Grant 298337 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Snellings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snellings, R., Scrivener, K.L. Rapid screening tests for supplementary cementitious materials: past and future. Mater Struct 49, 3265–3279 (2016). https://doi.org/10.1617/s11527-015-0718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0718-z

Keywords

Navigation