Skip to main content
Log in

Fire-resistance industrial portal frames: design with different mechanical properties steels and 35 meters spans

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Various portal frames are studied to establish their fire response over various fire exposure times. The frames were assembled with plain carbon steel (S275) and micro-alloyed fire resistant (FR) steel (with superior fire-resistant properties). An intumescent fire protective paint was also tested to improve the overall fire resistance of the steel structure. In this paper, a dimensioning method is proposed that combines structural calculations with a conventional software package for the calculation of structural stress, in accordance with the geometric and elastic moduli of each complete section of the industrial metallic frame. The structure was sized by selecting the most economical combination and by estimating the stresses in each particular structural element or section of the overall structure. The process was then repeated with these new dimensions to reach the optimal structural design. The key variables analyzed in this study are: six fire-exposure times, seven intumescent paint thicknesses, and eleven price ratios between the FR and the S275 steels. Each structure in this study has a span of 35 m. The main conclusion is that the use of FR steel combined with S275 and an intumescent paint system is the most cost effective and technically feasible design option for industrial portal frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chico B, López A, Lobo MA, De la Fuente D, Castaño JG, Morcillo M, López FA (2005) Estudio de la capacidad para intumescer de dos sistemas de pintura expuestos a ambientes internos agresivos. Rev Metal Madr. doi:10.3989/revmetalm.2005.v41.iExtra.1068

    Google Scholar 

  2. Duquesne S, Magnet S, Jama C, Delobel R (2004) Intumescent paints: fire protective coatings for metallic substrates. Surf Coat Tech. doi:10.1016/j.surfcoat.2003.10.075

    Google Scholar 

  3. Hindersinn RR (1990) Historical aspects of polymer fire retardance. ACS Symp Ser. doi:10.1021/bk-1990-0425.ch007

    Google Scholar 

  4. Butler KM (1997) Physical modeling of intumescent fire retardant polymers. ACS Symp Ser. doi:10.1021/bk-1997-0669.ch015

    Google Scholar 

  5. Awad WH, Wilkie CA (2011) Further study on the flammability of polyurea: the effect of intumescent coating and additive flame retardants. Polym Adv Technol. doi:10.1002/pat.1963

    Google Scholar 

  6. Horacek H (2009) Reactions of stoichiometric intumescent paints. J Appl Polym Sci 113:1745–1756

    Article  Google Scholar 

  7. Capeletty TL, Jackman LA, Childs WJ (1971) Recrystallization following hot-working of a high-strength low-alloy (HSLA) steel and a 304 stainless steel at the temperature of deformation. Metall Trans. doi:10.1007/BF02647650

    Google Scholar 

  8. Sha W, Kelly FS, Guo ZX (1999) Microstructure and properties of nippon fire-resistant steels. J Mater Eng Perform. doi:10.1007/s11665-999-0017-3

    Google Scholar 

  9. Schindler I, Hadasik E (2000) A new model describing the hot stress-strain curves of HSLA steel at high deformation. J Mater Process Tech. doi:10.1016/S0924-0136(00)00603-8

    Google Scholar 

  10. Won BL, Seung GH, Chan GP, Sung HP (2002) Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metall Mater Trans A 33A:1688–1699

    Google Scholar 

  11. Guo QL, Ding J, Sakumoto Y (2005) A practical approach for fire safety design of fire-resistant steel members. Steel Compos Struct 5(1):71–86

    Article  Google Scholar 

  12. Muratov AN, Morozov YuD, Chevscaya ON, Filippof GA (2007) Technology for the commercial production of fire-resistant steel for building structures. Metallurgist. doi:10.1007/s11015-007-0079-0

    Google Scholar 

  13. Wan R, Sun F, Zhang L, Shan A (2012) Development and study of high-strength low-Mo fire-resistant steel. Mater Des 36:227–232

    Article  Google Scholar 

  14. Wan R, Sun F, Zhang L, Shan A (2012) Effects of Mo on high-temperature strength of fire-resistant steel. Mater Des. doi:10.1016/j.matdes.2011.09.009

    Google Scholar 

  15. Chung HY, Lee CH, Su WJ (2010) Application of fire-resistant steel to beam-to-column moment connections at elevated temperatures. J Constr Steel Res. doi:10.1016/j.jcsr.2009.09.009

    Google Scholar 

  16. Ding J, Li GQ, Sakumoto Y (2004) Parametric studies on fire resistance of fire-resistant steel members. J Constr Steel Res. doi:10.1016/j.jcsr.2003.09.007

    Google Scholar 

  17. Sakumoto YU, Saito H (1995) Fire-safe design of modern steel buildings in Japan. J Constr Steel Res. doi:10.1016/0143-974X(94)00019-E

    Google Scholar 

  18. Muratov AN, Morozov YD, Chevskaya ON, Filippov GA (2007) Technology for the commercial production of fire-resistant steel for building structures. Metallurgist. doi:10.1007/s11015-007-0079-0

    Google Scholar 

  19. Panigrahi BK (2006) Microstructures and properties of low-alloy fire resistant steel. Indian Acad Sci. doi:10.1007/BF02709357

    Google Scholar 

  20. Kelly FS, Sha W (1999) A comparison of the mechanical properties of fire-resistant and S275 structural steels. J Constr Steel Res. doi:10.1016/S0143-974X(98),00252-1

    Google Scholar 

  21. Código Técnico de la Edificación (CTE). (2006)

  22. Instrucción de Acero Estructural (EAE). (2011)

  23. Eurocode 3. (2009)

  24. UNE EN 1363:2000. Fire resistance tests

  25. García H, Biezma MV, Cuadrado J, Orbe A (2013) Study of historical developments in the use of fire resistant steels. Mater High Temp. doi:10.1179/096034013X13809016785943

    Google Scholar 

  26. AFITI

  27. Metal 3D by Cype Ingenieros

  28. http://www.thyssenkrupp-steel-europe.com/en/ (14/01/2014)

  29. http://www.euroquimica.com/ESP/index.php (14/01/2014)

  30. UNE-ENV 13381-4:2005

  31. García H (2013) Comportamiento frente al fuego de pórticos metálicos empleando distintos tipos de acero con recubrimiento intumescente [Fire response of portal frames incorporating different types of steel with intumescent coatings] PhD University of Basque Country, Spa

Download references

Acknowledgments

The authors acknowledge the funding provided for this research project from the Basque Regional Government through grant IT781-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, H., Biezma, M.V., Cuadrado, J. et al. Fire-resistance industrial portal frames: design with different mechanical properties steels and 35 meters spans. Mater Struct 49, 341–352 (2016). https://doi.org/10.1617/s11527-014-0501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0501-6

Keywords

Navigation