Skip to main content
Log in

The role of aluminium in alkali-activated bentonites

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In the pursuit of new sources of aluminosilicates for alkaline cement manufacture, the present paper reports on the compositional and mineralogical assessment of the reactive potential of several types of bentonites. A number of factors affect strength development in these materials, in particular their potentially reactive silica and aluminium content. While bentonites normally have a high SiO2 content, the amount of reactive Al2O3 present is not always sufficient for the purpose at hand. The present study consequently also explored the effect of adding aluminium correctors (commercial sodium aluminate and bauxite) to the mix. The findings showed that de-hydroxylated bentonite reacted with an alkaline activator, yielding materials with cementitious properties. The addition of 10 % sodium aluminate raised mechanical strength, which was unaffected by the inclusion of bauxite. The primary reaction product was consistently found to be a (N,C)–A–S–H gel, with zeolites as the secondary products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arjuman P, Silbee MR, Roy DM (1997) Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In: Justnes H (ed) Proceedings of the 10th international congress on the chemistry cement. Gothenburg, Sweden (3v 020, p 4)

  2. Breck DW (1974) Zeolite molecular sieves. In: Robert E (ed) Structure, chemistry and use. Krieger Publishing Company, INC. Krieger Drive, Malabar, FL

  3. Buchwald A, Hohmann M, Posern K, Brendler E (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl Clay Sci 46:300–304

    Article  Google Scholar 

  4. Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the settings and hardening of high calcium fly ash-based geopolymer systems. J Mat Sci 47:4876–4883

    Article  Google Scholar 

  5. Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) An XRD study of the effect of SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 37:671–679

    Article  Google Scholar 

  6. Criado M, Fernández-Jiménez A, Palomo A (2010) Alkali activation of fly ash. Part 3: effect of curing conditions on reaction and its graphical description. Fuel 89:3185–3192

    Article  Google Scholar 

  7. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A 269:47–58

    Article  Google Scholar 

  8. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A 292:8–20

    Article  Google Scholar 

  9. Farmer VC (1975) The infrared spectra of minerals, mineralogical society, monograph 4. In: Farmer VC (ed). Mineralogical society, The Royal Society

  10. Fernández-Jiménez A, Palomo A (2003) Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel 82:2259–2265

    Article  Google Scholar 

  11. Fernández-Jiménez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214

    Article  Google Scholar 

  12. Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2006) The role played by reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91:111–119

    Article  Google Scholar 

  13. Fletcher RA, Mackenzie KJD, Nicholson CL, Shimada S (2005) The composition range of alumino silicate geopolymers. J Eur Cer Soc 25:1471–1477

    Article  Google Scholar 

  14. Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworths, London (England)

  15. Garcia-Lodeiro I, Fernádez-Jiménez A, Pena P, Palomo A (2014) Alkali activation of synthetic aluminosilicate glasses. Ceram Int 40:5547–5558

    Article  Google Scholar 

  16. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A (2008) FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J Sol–Gel Sci Technol 45:63–72

    Article  Google Scholar 

  17. García-Lodeiro I, Fernández-Jiménez A, Palomo A (2013) Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cem Concr Res 52:112–122

    Article  Google Scholar 

  18. Granizo ML, Alonso S, Blanco-Varela MT, Martinez-Ramirez S (2007) Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci 42:2934–2943

    Article  Google Scholar 

  19. Hajimohammadi A, Provis JL, van Deventer JSJ (2010) Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22(5199–5208):5199

    Article  Google Scholar 

  20. He C, Osback D, Makolicky E (1995) Pozzolanic Reactions of six principal clay minerals. Activation reactivity assessments and technological effects. Cem Concr Res 25(8):1691–1702

    Article  Google Scholar 

  21. Hu M, Zhu X, Long F (2009) Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem Concr Compos 31:762–768

    Article  Google Scholar 

  22. Huang WH (1997) Properties of cement fly -ash grout admixed with bentonite, silica fume or organic fiber. Cem Concr Res 27(3):395–406

    Article  Google Scholar 

  23. Iler RK (1955) The chemistry of silica, ed. Wiley, New York

  24. Kovalchuk G, Palomo A, Fernández-Jiménez A (2008) Activación alcalina de cenizas volantes. Relación entre el desarrollo mecánico resistente y la composición química de la ceniza. Materiales de la Construcción 58:35–52

    Google Scholar 

  25. Mozgawa W, Jastrzbski W, Handke M (2005) Vibrational spectra of D4R and D6R structural units. J Mol Struct 744–747(3)(SPEC. ISS.):663–670

    Article  Google Scholar 

  26. Murray HH (2013) Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays, ed. Elsevier, USA

  27. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329

    Article  Google Scholar 

  28. Patterson H, Murray H (1972) Clays. Industrial minerals and rocks, ed. Elsevier, USA

  29. Pimraksa K, Chindaprasirt P, Rungchet A, Sagoe-Crentsil K, Sato T (2011) Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater Sci Eng A 528:6616–6623

    Article  Google Scholar 

  30. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47:11–25

    Article  Google Scholar 

  31. Ruiz-Santaquiteria C, Fernández-Jiménez A, Palomo A (2011) Quantitative determination of reactive SiO2 and Al2O3 in aluminosilicate materials. In: XIII international congress of cement chemistry. Madrid, Spain

  32. Ruiz-Santaquiteria C, Fernádez-Jiménez A, Skibsted J, Palomo A (2013) Clay reactivity: production of alkali activated cements. Appl Clay Sci 73(1):11–16

    Article  Google Scholar 

  33. Sagoe-Crentsil K, Brown T (2006) Some key materials and process parameters governing geopolymer binder performance. In: International conference on pozzolan, concrete and geopolymer khon kaen. Thailand, May 24–25, 2006

  34. Seiffarth T, Hohmann M, Posern K, Kaps C (2013) Effect of thermal pre-treatment conditions of common clays on the performance of lay-based geopolymeric binders. Appl Clay Sci 73:35–41

    Article  Google Scholar 

  35. Sharpe AG (1993) Química Inorgánica. Editorial Reverte S.A, Barcelona, Spain

    Google Scholar 

  36. Shi C, Fernández-Jimenez A, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to portland cement. Cem Concr Res 41:750–763

    Article  Google Scholar 

  37. Silva PD, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37:512–518

    Article  Google Scholar 

  38. Targan S, Olgun A, Erdogan Y, Sevinc V (2002) Effects of supplementary cementing materials on the properties of cement and concrete. Cem Concr Res 32:1551–1558

    Article  Google Scholar 

  39. Targan S, Olgun A, Erdogan Y, Sevinc V (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem Concr Res 33(8):1175–1182

    Article  Google Scholar 

  40. Weaver CE, Pollard L (1973) The chemistry of clays minerals, ed. Elsevier, USA

  41. Zeng Q, Li K (2104) Reaction and microstructure of cement–fly-ash system. Mater Struct. doi:10.1617/s11527-014-0266-y

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Economy and Competitiveness under Project BIA 2010-17530 and supported by a Post-graduate Studies Council contract (JAE DOC 2011), co-funded by the Spanish National Research Council and the European Social Fund (FSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. García-Lodeiro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Lodeiro, I., Cherfa, N., Zibouche, F. et al. The role of aluminium in alkali-activated bentonites. Mater Struct 48, 585–597 (2015). https://doi.org/10.1617/s11527-014-0447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0447-8

Keywords

Navigation