Skip to main content

Advertisement

Log in

Evolution of mechanical behaviour of mortar with re-saturation after drying

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study deals with the effect of re-saturation after drying on the evolution of the mechanical behaviour of a standard mortar. Uniaxial and triaxial compression tests were performed according to the saturation state (saturated, dried in an oven at 60 °C until constant weight, re-saturated with water in different proportions). The results obtained show that even if the strength increases after oven-drying, the micro-cracking induced at the same time has an important influence on the evolution of the mechanical properties after re-saturation. The uniaxial and triaxial compressive strengths decrease regularly with re-saturation. The strength of vacuum re-saturated samples is lower than that of saturated samples (not subjected to drying) but the decrease is less marked in the case of triaxial deviatoric tests due to the presence of 15 MPa of confining pressure. Moreover, an additional decrease of Young’s modulus is observed in uniaxial compression after vacuum re-saturation while this modulus shows no variation in triaxial compression due to the presence of confining pressure. In addition, the elastic limit stress depends on the degree of re-saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bažant ZP, Wittmann FH (1982) Creep and Shrinkage in Concrete Structures. John Wiley and Sons, UK

    Google Scholar 

  2. Wittmann FH (1982) Creep and shrinkage mechanisms. In: Wittmann FH (ed) Bažant ZP. Creep and Shrinkage in Concrete Structures, J. Wiley and Sons, pp 129–161

    Google Scholar 

  3. Acker P (1988) Comportement mécanique du béton : apport de l’approche physico-chimique. PhD dissertation, Ecole Nationale des Ponts et Chaussées, Rapport de Recherche LPC n152,Paris [in French]

  4. Baroghel-Bouny V (1994) Caractérisation des pâtes de ciment et des bétons, PhD dissertation, Ecole Nationale des Ponts et Chaussées, Paris [in French]

  5. Colina H, Acker P (2000) Drying cracks: kinematics and scale laws. Mater Struct 33:101–107

    Article  Google Scholar 

  6. Bartlett FM, MacGregor JG (1994) Effect of moisture condition on concrete core strengths. ACI Mater J 91(3):227–236

    Google Scholar 

  7. Popovics S (1986) Effect of curing method and moisture condition on compressive strength of concrete. ACI Mater J 83:650–657

    Google Scholar 

  8. Neville AM (1995) Properties of Concrete, 4th edn. Longman Group

  9. Hearn N (1999) Effect of shrinkage and load-induced cracking on water permeability of concrete. ACI Mater J 96:234–241

    Google Scholar 

  10. Bisschop J, Pel L, van Mier JGM (2001) Effect of aggregate size and paste volume on drying shrinkage microcracking in cement-based composites. In: Ulm F-J, Bažant ZP, Wittmann FH (eds) Creep, shrinkage & durability mechanics of concrete and other quasi-brittle materials. Elsevier, Amsterdam, pp 75–80

    Google Scholar 

  11. de Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of micro-cracking induced by drying shrinkage. Cem Concr Comp 30:947–956

    Article  Google Scholar 

  12. Yurtdas I (2003) Couplage comportement mécanique et dessiccation des matériaux à matrice cimentaire : étude expérimentale sur mortiers, PhD dissertation, Université des Sciences et Technologies de Lille and Ecole Centrale de Lille [in French]

  13. Yurtdas I, Burlion N, Skoczylas F (2004) Triaxial mechanical behaviour of mortar: effects of drying. Cem Concr Res 34:1131–1143

    Article  Google Scholar 

  14. Yurtdas I, Burlion N, Skoczylas F (2004) Experimental characterisation of the drying effect on uniaxial mechanical of mortar. Mater Struct 37:170–176

    Article  Google Scholar 

  15. Burlion N, Bourgeois F, Shao JF (2005) Effect of drying on mechanical behaviour of concrete. Cem Concr Comp 27:367–379

    Article  Google Scholar 

  16. Yurtdas I, Burlion N, Shao JF, Li A (2011) Evolution of the mechanical behaviour of a high performance self-compacting concrete under drying. Cem Concr Comp 33:380–388

    Article  Google Scholar 

  17. Burlion N, Skoczylas F, Dubois T (2003) Induced anisotropic permeability due to drying of concrete. Cem Concr Res 33:679–687

    Article  Google Scholar 

  18. Mills RH (1960). Strength-maturity relationship for concrete which is allowed to dry. In: RILEM International Symposium on concrete and reinforced concrete in hot country, Haîfa

  19. Wittmann FH (1968) Surface tension, shrinkage and strength of hardened cement paste. Mater Struct 1(6):547–552

    Google Scholar 

  20. Okajima T, Ishikawa T, Ichise K (1980) Moisture effect on the mechanical properties of cement mortar. Trans Jpn Conc Inst 2:125–132

    Google Scholar 

  21. Zimmerman RG (1972) Major factors affecting the multiaxial compressive strength of plain concrete, In: The Deformations and the Rupture of Solids Subjected to Multiaxial Stresses Proceedings of RILEM International Symposium, Cannes, pp 257–272

  22. Palaniswamy R, Shah SP (1974) Fracture and stress-strain relationship of concrete under triaxial compression. J Struct Div ASCE ST5 100(5):901–916

    Google Scholar 

  23. Vu XH, Malecot Y, Daudeville L, Buzaud E (2009) Experimental analysis of concrete behaviour under high confinement: effect of the saturation ratio. Int J Solid Struct 46:1105–1120

    Article  MATH  Google Scholar 

  24. Akroyd ZNW (1961) Concrete under triaxial stress. Mag Conc Res 13:111–118

    Article  Google Scholar 

  25. Gilkey HJ (1937) The moist curing of concrete. Eng News Rec 119:630–633

    Google Scholar 

  26. Pihlajavaara SE (1974) A review of some of the main results of a research on the ageing phenomena of concrete, effect of moisture conditions on strength, shrinkage and creep of mature concrete. Cem Concr Res 4:761–771

    Article  Google Scholar 

  27. Price WH (1951) Factors influencing concrete strength. J ACI 47:417–432

    Google Scholar 

  28. Beddoe RE, Lippok R (1999) Hygral stress in hardened cement paste. Mater Struc 32:627–634

    Article  Google Scholar 

  29. Dupain R, Lanchon R, Saint-Arroman J-C (2004) Granulats, Sols, Ciments et Bétons. Cateilla, Paris [in French]

    Google Scholar 

  30. Skoczylas F, Burlion N, Yurtdas I (2007) About drying effects and poro-mechanical behaviour of mortars. Cem Concr Comp 29:383–390

    Article  Google Scholar 

  31. Yurtdas I, Burlion N, Skoczylas F (2008) Comportement différé des mortiers soumis au séchage et effet induit sur la perméabilité. Eur J Environ Civ Eng 12:701–721 [in French]

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. S.Y. Xie and T. Rougelot for their technical help in laboratory testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yurtdas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtdas, I., Burlion, N. & Shao, J.F. Evolution of mechanical behaviour of mortar with re-saturation after drying. Mater Struct 48, 3343–3355 (2015). https://doi.org/10.1617/s11527-014-0403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0403-7

Keywords

Navigation