Skip to main content
Log in

Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The effect of strain rate on the compressive behaviours of geopolymer concrete and mortar is reported. Split Hopkinson pressure bar was adopted for the high strain rate testings. The dynamic increase factors for compressive strength (\({\text{DIF}}_{{f_{\text{c}} }}\)) and critical strain (\({\text{DIF}}_{{\varepsilon_{\text{c}} }}\)) were measured and compared with Concrete Comite Euro-international du Beton (CEB) recommendations. The results show that alkaline activators have significant influence on the quasi-static compressive strength of geopolymer concrete. With high strain rate loading, the \({\text{DIF}}_{{f_{\text{c}} }}\) of geopolymer concrete and mortar mixes increase with respect to increasing strain rates and in agreement with CEB recommendations. In addition, the coarse aggregates in geopolymer concrete mixes play important role in the increase of compressive strength. However, CEB recommendations underestimate the \({\text{DIF}}_{{\varepsilon_{\text{c}} }}\) of critical strain for geopolymer concrete in the high strain rate loading. It is found that for the quasi-static loading and low strain rate loading, cracks propagate along interface transition zone (ITZ) and matrix of geopolymer concrete specimens whereas cracks occur at both the aggregates and ITZ under high strain rate loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37(8):1633–1656

    Article  Google Scholar 

  2. Rahier H, Mele B, Biesemans M, Wastiels J, Wu X (1996) Low-temperature synthesized aluminosilicate glasses. J Mater Sci 31(1):71–79

    Article  Google Scholar 

  3. Duxson P, Fernandez Jimenez A, Provis JL, Lukey GC, Palomo A (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  Google Scholar 

  4. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. ACI Mater J 101(6):467–472

    Google Scholar 

  5. Sarker PK (2009) Analysis of geopolymer concrete columns. Mater Struct 42(6):715–724

    Article  Google Scholar 

  6. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2005) Fly ash-based geopolymer concrete. Aus J Struct Eng 6(1):77–86

    Google Scholar 

  7. Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2007) Fly ash-based geopolymer concrete: study of slender reinforced columns. J Mater Sci 42(9):3124–3130

    Article  Google Scholar 

  8. Rangan BV (2009) Chapter 11 in Geopolymers: structures, processing, properties, and applications. In: Provis J, Deventer JV (eds) Engineering properties of geopolymer concrete. Woodhead Publishing Limited, London

    Google Scholar 

  9. Pan Z, Sanjayan JG, Rangan BV (2011) Fracture properties of geopolymer paste and concrete. Mag Concr Res 63(10):9

    Google Scholar 

  10. Sarker PK (2009) Analysis of geopolymer concrete columns. Mater Struct 42(6):715–724

    Article  Google Scholar 

  11. Pan Z, Sanjayan JG, Collins F (2014) Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem Concr Res 56:182–189

    Article  Google Scholar 

  12. Pan Z, Sanjayan JG (2012) Factors influencing softening temperature and hot-strength of geopolymers. Cem Concr Compos 34(2):261–264

    Article  Google Scholar 

  13. Pan Z, Sanjayan JG, Kong DLY (2012) Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr Build Mater 36:365–372

    Article  Google Scholar 

  14. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2007) Alkali–aggregate reaction in activated fly ash systems. Cem Concr Res 37(2):175–183

    Article  Google Scholar 

  15. Pan Z, Feng KN, Gong K, Zou B, Korayem AH, Sanjayan J et al (2013) Damping and microstructure of fly ash-based geopolymers. J Mater Sci 48(8):3128–3137

    Article  Google Scholar 

  16. Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain-rate on concrete strength. ACI Mater J 92(1):37–47

    Google Scholar 

  17. Khandelwal M, Ranjith PG, Pan Z, Sanjayan JG (2011) Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition. Arab J Geosci 6(7):2383–2389

    Article  Google Scholar 

  18. Li W, Xu J (2009) Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater Sci Eng A 505(1–2):178–186

    Article  Google Scholar 

  19. CEB Comite Euro-International Du Beton (1993) CEB-FIP model code 1990: design code. Telford

  20. ASTM (2007) C192. Standard practice for making and curing concrete test specimens in the laboratory

  21. ASTM (2011) C1688. Standard test method for density and void content of freshly mixed pervious concrete

  22. ASTM (2007) C39-94. Standard specification for ready-mixed concrete

  23. Malvar LJ, Crawford JE (1998) Dynamic increase factors for concrete. DTIC Document

  24. ASTM (2007) C31/C31M. Standard practice for making and curing concrete test specimens in the field

  25. Lu YB, Li QM (2011) About the dynamic uniaxial tensile strength of concrete-like materials. Int J Impact Eng 38(4):171–180

    Article  Google Scholar 

  26. Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250

    Article  Google Scholar 

  27. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, Van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A 292(1):8–20

  28. Fernandez-Jimenez AM, Palomo A, Lopez-Hombrados C (2006) Engineering properties of alkali-activated fly ash concrete. ACI Mater J 103(2):106–112

    Google Scholar 

  29. Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Curtin University of Technology, Perth

    Google Scholar 

  30. Ranjith PG, Jasinge D, Song JY, Choi SK (2008) A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: use of acoustic emission. Mech Mater 40(6):453–469

    Article  Google Scholar 

  31. Rossi P (1997) Strain rate effects in concrete structures: the LCPC experience. Mater Struct 30(1):54–62

    Article  Google Scholar 

  32. Rossi P, Toutlemonde E (1996) Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms. Mater Struct 29(186):116–118

    Article  Google Scholar 

  33. Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40(2):343–360

    Article  Google Scholar 

  34. Wang SS, Zhang MH, Quek ST (2012) Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading. Constr Build Mater 31:1–11

    Article  Google Scholar 

  35. Bischoff PH, Perry SH (1985) Compressive strain rate effects of concrete. MRS Online Proceedings Library 64:425–450

    Google Scholar 

  36. Ren ZG, Chen M, Lu ZA, Xu WG (2012) Dynamic mechanical property of hybrid fiber reinforced concrete (HFRC). J Wuhan Univ Technol Mater Sci Ed 27(4):783–788

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Australia Research Council in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Hui Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K.N., Ruan, D., Pan, Z. et al. Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings. Mater Struct 48, 671–681 (2015). https://doi.org/10.1617/s11527-014-0322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0322-7

Keywords

Navigation