Skip to main content
Log in

Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Cracking can significantly accelerate mass transport in concrete and as such, impact its durability. This paper is aimed at quantifying the effect of saturated cracks on ion diffusion. Electrical conductivity, measured by electrical impedance spectroscopy (EIS), was used to characterize the diffusion coefficient of fiber-reinforced cement paste disks that contained one or two through-thickness cracks. Crack widths in the range 20–100 μm were generated by controlled indirect tension test. Crack profiles were digitized and quantified by image analysis to determine crack volume fraction and average crack width. Crack connectivity (e.g., inverse of tortuosity) was calculated from the conductivity results measured by EIS. The results suggest that the diffusion coefficient of cracked samples is strongly and linearly related to the crack volume fraction; but is not directly dependent on crack width. Crack tortuosity does reduce the ion diffusion through cracks, but its impact is not very significant. Overall, the most important parameter governing ion diffusion in saturated cracked concrete is the volume fraction of cracks. Theoretical justifications of these observations are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AASHTO T259 (1980) Standard method of test for resistance of concrete to chloride ion penetration. American Association of State Highway and Transportation Officials, Washington, DC

    Google Scholar 

  2. Adamson AW (1997) Physical chemistry of surfaces, Chap. V, 6th edn. Wiley, New York

    Google Scholar 

  3. Akhavan A, Shafaatian SMH, Rajabipour F (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42(2):313–320

    Article  Google Scholar 

  4. Aldea CM, Shah SP, Karr A (1999) Effect of cracking on water and chloride permeability of concrete. J Mater Civ Eng 11(3):181–187

    Article  Google Scholar 

  5. Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res 23(3):724–742

    Article  Google Scholar 

  6. ASTM C1202-10 (2010) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. American Society for Testing and Materials, West Conshohocken

  7. ASTM C1556-11 (2011) Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion, American Society for Testing and Materials, West Conshohocken

  8. ASTM C1760-12, (2012) Standard test method for bulk electrical conductivity of hardened concrete. American Society for Testing and Materials, West Conshohocken

  9. Atkinson A, Nickerson AK (1984) The diffusion of ions through water-saturated cement. J Mater Sci 19(9):3068–3078

    Article  Google Scholar 

  10. Barneyback RS, Diamond S (1981) Expression and analysis of pore fluid from hardened cement pastes and mortars. Cem Concr Res 11:279–285

    Article  Google Scholar 

  11. Bentur A, Diamond S, Berke NS (1997) Steel corrosion in concrete: fundamentals and civil engineering practice. Taylor & Francis, London

    Google Scholar 

  12. Bokris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry: fundamentals of electrodics. Kluwer, New York

    Google Scholar 

  13. Brace WF (1977) Permeability from resistivity and pore shape. J Geophys Res 82(23):3343–3349

    Article  Google Scholar 

  14. Brantervik K, Niklasson GA (1991) Circuit models for cement based materials obtained from impedance spectroscopy. Cem Concr Res 21(4):496–508

    Article  Google Scholar 

  15. Buenfeld NR, Newman JB (1987) Examination of three methods for studying ion diffusion in cement pastes, mortars and concrete. Mater Struct 20(1):3–10

    Article  Google Scholar 

  16. Castellote M, Andrade C, Alonso C (2001) Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cem Concr Res 31(10):1411–1420

    Article  Google Scholar 

  17. Christensen BJ, Coverdale T, Olson RA, Ford SJ, Garboczi EJ, Jennings HM, Mason TO (1994) Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J Am Ceram Soc 77(11):2789–2804

    Article  Google Scholar 

  18. Djerbi A, Bonnet S, Khelidj A, Baroghel-bouny V (2008) Influence of traversing crack on chloride diffusion into concrete. Cem Concr Res 38(6):877–883

    Article  Google Scholar 

  19. Dresner L (1972) Some remarks on the integration of the extended Nernst–Planck equations in the hyperfiltration of multicomponent solutions. Desalin 10(1):27–46

    Article  Google Scholar 

  20. Dullien FAL (1979) Porous media; fluid transport and pore structure. Academic Press, New York

    Google Scholar 

  21. Gagné R, François R, Masse P (2001) Chloride penetration testing of cracked mortar samples. In: Banthia N, Sakai K, Gjørv OE (eds) 3rd International conference on concrete under severe condition: environment and lading, Vancouver, 1:198–205

  22. Garboczi EJ (1990) Permeability diffusivity and microstructural parameters: a critical review. Cem Concr Res 20(4):591–601

    Article  Google Scholar 

  23. Gérard B, Marchand J (2000) Influence of cracking on the diffusion properties of cement-based materials: part I: influence of continuous cracks on the steady-state regime. Cem Concr Res 30(1):37–43

    Article  Google Scholar 

  24. Goto S, Roy DM (1981) Diffusion of ions through hardened cement pastes. Cem Concr Res 11(5–6):751–757

    Article  Google Scholar 

  25. Gu P, Xie P, Beaudoin JJ, Brousseau R (1992) AC Impedance spectroscopy (I): a new equivalent circuit model for hydrated Portland cement paste. Cem Concr Res 22(5):833–840

    Article  Google Scholar 

  26. Ismail M, Toumi A, François R, Gagné R (2004) Effect of crack opening on the local diffusion of chloride in inert materials. Cem Concr Res 34(4):711–716

    Article  Google Scholar 

  27. Ismail M, Toumi A, François R, Gagné R (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem Concr Res 38(8–9):1106–1111

    Article  Google Scholar 

  28. Jacobsen S, Marchand J, Boisvert L (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cem Concr Res 26(6):869–881

    Article  Google Scholar 

  29. Jang SY, Kim BS, Oh BH (2011) Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem Concr Res 41(1):9–19

    Article  Google Scholar 

  30. Kato E, Kato Y, Uomoto T (2005) Development of simulation model of chloride ion transportation in cracked concrete. J Adv Concr Technol 3(1):85–94

    Article  Google Scholar 

  31. Konin A, François R, Arliguie G (1998) Penetration of chlorides in relation to the microcracking state into reinforced ordinary and high strength concrete. Mater Struct 31:310–316

    Article  Google Scholar 

  32. Locogne P, Massat M, Ollivier JP, Richet C (1992) Ion diffusion in microcracked concrete. Cem Concr Res 22:431–438

    Article  Google Scholar 

  33. MacDonald KA, Northwood DO (1995) Experimental measurements of chloride ion diffusion rates using a two-compartment diffusion cell: effects of material and test variables. Cem Concr Res 25(7):1407–1416

    Article  Google Scholar 

  34. McCarter WJ, Garvin S, Bouzid N (1988) Impedance measurements on cement paste. J Mater Sci Lett 7(10):1056–1057

    Article  Google Scholar 

  35. Mindess S, Young JF, Darwin D (2003) Concrete, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  36. NT BUILD 355 (1997) Chloride diffusion coefficient from migration cell experiments. Nordtest, Tekniikantie 12, FIN-02150, Espoo

  37. NT BUILD 443 (1995) Concrete, hardened: accelerated chloride penetration. Nordtest, Esbo

  38. NT BUILD 492 (1999) Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. Nordtest, Esbo

  39. Page CL, Short NR, Tarras AEL (1981) Diffusion of chloride ions in hardened cement pastes. Cem Concr Res 11(3):395–406

    Article  Google Scholar 

  40. Polder R, Andrade C, Elsener B, Vennesland Ø, Gulikers J, Weidert R, Raupach M (2000) Test methods for onside measurement of resistivity of concrete. Mater Struct 33(10):603–611

    Article  Google Scholar 

  41. Rajabipour F, (2006) In situ electrical sensing and material health monitoring of concrete structures. PhD Dissertation, Purdue University, West Lafayette

  42. Rajabipour F, Weiss WJ (2007) Electrical conductivity of drying cement paste. Mater Struct 40(10):1143–1160

    Article  Google Scholar 

  43. Reinhardt HW (1997) Penetration and permeability of concrete: barriers to organic and contaminating liquids. RILEM Technical Committee, London

    Google Scholar 

  44. Rodriguez OG, Hooton RD (2003) Influence of cracks on chloride ingress into concrete. ACI Mater J 100(2):120–126

    Google Scholar 

  45. Scuderi CA, Mason TO, Jennings HM (1991) Impedance spectra of hydrating cement pastes. J Mater Sci 26(2):349–353

    Article  Google Scholar 

  46. Snyder KA (2001) Validation and modification of the 4SIGHT computer program, NIST-IR 6747, National Institute of Standards and Technology (NIST). Gaithersburg, Maryland

    Google Scholar 

  47. Stanish KD, Hooton RD, Thomas MDA (1997) Testing the chloride penetration resistance of concrete: a literature review, FHWA contract DTFH61-97-R-00022. US Federal Highway Administration, Washington, DC

    Google Scholar 

  48. Tang L, Nilsson LO (1992) Chloride diffusivity in high strength concrete. Nordic Concr Res 11:162–170

    Google Scholar 

  49. Tang L, Sørensen HE (2001) Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete. Mater Struct 34(8):479–485

    Article  Google Scholar 

  50. Tong L, Gjørv OE (2001) Chloride diffusivity based on migration testing. Cem Concr Res 31(7):973–982

    Article  Google Scholar 

  51. Truc O, Ollivier JP, Carcassès M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cem Concr Res 30(2):217–226

    Article  Google Scholar 

  52. Weast RC, Astle MJ, Beyer WH (1986) CRC handbook of chemistry and physics, 66th edn. CRC Press, Boca Raton

    Google Scholar 

  53. Weiss J, Snyder K, Bullard J, Bentz D, (2012) Using a saturation function to interpret the electrical properties of partially saturated concrete. J Mater Civ Eng (in press)

  54. Zhang T, Gjørv OE (1996) Diffusion behavior of chloride ions in concrete. Cem Concr Res 26(6):907–917

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Rajabipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhavan, A., Rajabipour, F. Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy. Mater Struct 46, 697–708 (2013). https://doi.org/10.1617/s11527-012-9927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9927-x

Keywords

Navigation