Skip to main content
Log in

Round Robin Test for composite-to-brick shear bond characterization

  • RILEM TECHNICAL COMMITTEE
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The paper presents the experience of a working group within the RILEM Technical Committee 223-MSC ‘Masonry Strengthening with Composite materials’, aimed at developing a standardized, reliable procedure for characterizing the bonding mechanism of masonry elements strengthened with composite materials under shear actions. Twelve laboratories from European universities and research centers were involved. Two different set-ups were compared, for single-lap and double-lap shear tests (the latter in two versions). Four kinds of fiber fabrics, i.e., glass, carbon, basalt and steel, were applied with epoxy resins (wet lay-up system) to clay brick units, for a total of 280 monotonic tests. The results provided information regarding the response of externally bonded-to-brick composites in terms of observed failure mechanisms, load capacity, effective transfer length, and bond shear stress–slip behavior. The test results of the 12 laboratories constitute a set of statistically representative data which may conveniently be used for setting appropriate design provisions and guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

References

  1. ACI 440.2R-08 (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI Committee 440, Farmington Hills

  2. ACI 440.3R-04 (2004) Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures. ACI Committee 440, Farmington Hills

  3. ACI 440.7R-10 (2010) Guide for design and construction of externally bonded FRP systems for strengthening unreinforced masonry structures. ACI Committee 440, Farmington Hills

  4. ACI 440M Guide Draft-1 (2004) Guide for the design and construction of externally bonded FRP system for strengthening unreinforced masonry structures. ACI Committee 440, Farmington Hills

    Google Scholar 

  5. Aiello MA, Sciolti MS (2003) Experimental investigation on bond between FRP sheets and natural masonry blocks. In: Proceedings of the 10th international conference on structural faults and repair SF&R-2003, London, UK

  6. Aiello MA, Sciolti MS (2005) Influence of moistness and high temperature on bond between FRP reinforcement and calcarenite ashlars. In: Proceedings of the 3rd international conference on composites in construction—CCC2005, Lyon, France

  7. Aiello MA, Sciolti MS (2006) Bond analysis of masonry structures strengthened with CFRP sheets. Constr Build Mater 20(1):90–100

    Article  Google Scholar 

  8. Aiello MA, Micelli F, Valente L (2005) Circular masonry columns confined with FRP. In: Proceedings of the 3rd international conference on composites in construction—CCC2005, Lyon, France

  9. Aiello MA, Micelli F, Valente L (2007) Structural upgrading of masonry columns by using composite reinforcements. ASCE J Compos Constr 11(6):650–658

    Article  Google Scholar 

  10. Albert ML, Cheng JJR, Elwi AE (1998) Rehabilitation of unreinforced masonry walls with externally applied fiber-reinforced polymers. In: Structural engineering report no. 226, Department of Civil and Environmental Engineering, University of Alberta, Canada

  11. Ascione L, Feo L, Fraternali F (2005) Load carrying capacity of 2D FRP/strengthened masonry structures. Compos B 36(8):619–626

    Article  Google Scholar 

  12. ASTM C1583 (2004) Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method). American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  13. ASTM D 3039/D 3039M-07 (2008) Standard test method for tensile properties of polymer matrix composite materials. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  14. Barbieri A, Borri A, Corradi M, Di Tommaso A (2002) Dynamic behaviour of masonry vaults repaired with FRP: experimental analysis. In: Proceedings of the 6th international conference of the British Masonry Society, UK, pp 7–16

  15. Basilio I, Oliveira D, Lourenço P (2004) Optimal FRP strengthening of masonry arches. In: Proceedings of the 13th international conference on brick and block masonry conference, Amsterdam, Netherlands

  16. Borri A, Casadei P, Castori G, Ebaugh S (2007) Research on composite strengthening of masonry arches. In: Proceedings of the 8th international symposium on fiber reinforced polymer reinforcement for concrete structures—FRPRCS-8, Patras, Greece

  17. Borri A, Castori G, Grazini A (2007) Seismic upgrading of historical masonry buildings with steel reinforced grout (SRG). In: Proceedings of the 8th international symposium on fiber reinforced polymer reinforcement for concrete structures—FRPRCS-8, Patras, Greece

  18. Briccoli Bati S, Rovero L (2000) Consolidation of masonry arches with carbon–fiber reinforced plastics. In: Proceedings of the 12th international brick/block conference, Madrid, Spain

  19. Briccoli Bati S, Rovero L (2001) Experimental validation of a proposed numerical model for the FRP consolidation of masonry arches. In: Proceedings of the 3rd international conference on structural analysis of historical construction—SAHC 2001, Guimaraes, Portugal, pp 1057–1066

  20. Briccoli Bati S, Rovero L (2009) Bond strength between brick and CFRP strips. In: Proceedings of the 3rd national conference on mechanics of masonry structures strengthened with composite materials: modeling, testing, design, control—MuRiCo3, Venice, Italy, pp 146–152

  21. Camli US, Binici B (2007) Strength of carbon fiber reinforced polymers bonded to concrete and masonry. Constr Build Mater 21:1431–1446

    Article  Google Scholar 

  22. Cancelli AN, Aiello MA, Casadei P (2007) Experimental investigation on bond properties of SRP/SRG—masonry systems. In: Proceedings of the 8th international symposium on fiber reinforced polymer reinforcement for concrete structures—FRPRCS-8, Patras, Greece

  23. Capozucca R (2010) Experimental FRP/SRP-historic masonry delamination. Compos Struct 92:891–903

    Article  Google Scholar 

  24. Casareto M, Oliveri A, Romelli A, Lagomarsino S (2003) Bond behavior of FRP laminates adhered to masonry. Advancing with composites. In: Proceedings of the international conference on Plast-2003, Milan, Italy

  25. Cecchi A, Milani G, Tralli A (2004) In-plane loaded CFRP reinforced masonry walls: mechanical characteristics by homogenisation procedures. Compos Sci Technol 64:2097–2112

    Article  Google Scholar 

  26. Chajes MJ, Finch WW Jr, Januszka TF, Thomson TA (1996) Bond and force transfer of composite material plates bonded to concrete. ACI Struct J 93(2):295–303

    Google Scholar 

  27. Ciesielski R, Ciurej H, Kwiecień A (2004) Application of CFRP laminates as strengthening of cracked brick arches. In: Proceedings of the 4th international conference on structural analysis of historical construction—SAHC 2004, Padova, Italy, pp 1357–1365

  28. CNR DT200 (2004) Guide for the design and construction of an externally bonded FRP system for strengthening existing structures. Italian National Research Council, Rome

    Google Scholar 

  29. Corradi M, Borri A, Vignoli A (2002) Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997–1998. Constr Build Mater 16(4):229–239

    Article  Google Scholar 

  30. Corradi M, Grazini A, Borri A (2007) Confinement of brick masonry columns with CFRP materials. Compos Sci Technol 67(9):1772–1783

    Article  Google Scholar 

  31. De Lorenzis L, Miller B, Nanni A (2001) Bond of FRP laminates to concrete. ACI Mat J 98(3):256–264

    Google Scholar 

  32. De Lorenzis L, Dimitri R, La Tegola A (2005) Strengthening of masonry edge vaults with FRP composites. In: Proceedings of the 3rd international conference on composites in construction—CCC2005, Lyon, France

  33. De Lorenzis L, Dimitri R, La Tegola A (2007) Reduction of the lateral thrust of masonry arches and vaults with FRP composites. Constr Build Mater 21(7):1415–1430

    Article  Google Scholar 

  34. Ehsani MR, Saadatmanesh H, Al-Saidy A (1997) Shear behavior of URM retrofitted with FRP overlays. ASCE J Compos Constr 1(1):17–25

    Article  Google Scholar 

  35. El-Gawady MA, Lestuzzi P, Badoux M (2005) Aseismic retrofitting of unreinforced masonry walls using FRP. Compos B 37(2):148–162

    Article  Google Scholar 

  36. EN 772-1 (2002) Methods of test for masonry units—part 1: determination of compressive strength

  37. Faella C, Martinelli E, Paciello S, Perri F (2009) Composite materials for masonry structures: the adhesion issue. In: Proceedings of the 3rd conference on mechanics of masonry structures strengthened with composite materials: modeling, testing, design, control—MuRiCo3, Venice (Italy), pp 266–273

  38. Ferracuti B, Savoia M, Mazzotti C (2007) Interface law for FRP-concrete delamination. Compos Struct 80:523–531

    Article  Google Scholar 

  39. Foraboschi P (2001) Strength assessment of masonry arch retrofitted using composite reinforcements. Mason Int 15(1):17–25

    Google Scholar 

  40. Foraboschi P (2004) Strengthening of masonry arches with fiber-reinforced polymer strips. ASCE J Compos Constr 8(3):191–202

    Article  Google Scholar 

  41. Galati N, Micelli F, Tumialan JG, La Tegola A, Nanni A (2004) Comparison between FRP strengthening techniques on the out-of-plane behaviour of URM masonry walls. In: Proceedings of the 1st international conference on innovative materials and technologies for construction and restoration—IMTCR04, Lecce, Italy, pp 440–457

  42. Garbin E, Panizza M, Valluzzi MR (2010) Experimental assessment of bond behaviour of FRP on brick masonry. IABSE Struct Eng Int 20(4):392–399

    Article  Google Scholar 

  43. Garmendia L, San-José JT, García D, Larrinaga P (2011) Rehabilitation of masonry arches with compatible advanced composite material. Constr Build Mater 25(12):4374–4385

    Article  Google Scholar 

  44. Gilstrap JM, Dolan CW (1998) Out-of-plane bending of FRP-reinforced masonry walls. Compos Sci Technol 58(8):1277–1284

    Article  Google Scholar 

  45. Grande E, Imbimbo M, Sacco E (2011) Bond behaviour of CFRP laminates glued on clay bricks: experimental and numerical study. Compos B Eng 42(2):330–340

    Article  Google Scholar 

  46. Grande E, Imbimbo M, Sacco E (2011) Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials 4(3):585–600

    Article  Google Scholar 

  47. Hamid AA, El-Dakhakhni WW, Hakam ZHR, Elgaaly M (2005) Behavior of composite unreinforced masonry—fiber-reinforced polymer wall assemblages under in-plane loading. ASCE J Compos Constr 9(1):73–83

    Article  Google Scholar 

  48. Hamoush S, McGinley M, Mlakar P, Scott D, Murray K (2001) Out-of-plane strengthening of masonry walls with reinforced composites. ASCE J Compos Constr 5(3):139–145

    Google Scholar 

  49. https://rilem223dwh.isqweb.it/. Accessed June 1st 2011

  50. Kuzik MD, Elwi AE, Roger Cheng JJ (2003) Cyclic flexure tests of masonry walls reinforced with glass fiber reinforced polymer sheets. ASCE J Compos Constr 7(1):20–30

    Article  Google Scholar 

  51. Lee YJ, Boothby TE, Bakis CE, Nanni A (1999) Slip modulus of FRP sheets bonded to concrete. ASCE J Compos Constr 3(4):161–167

    Article  Google Scholar 

  52. Lourenço P, Poças Martins JP (2001) Strengthening of the architectural heritage with composite materials. In: Proceedings of the 1st international conference on composites in construction—CCC2001, Porto, Portugal

  53. Luciano R, Sacco E (1998) Damage of masonry panels reinforced by FRP sheets. Int J Solids Struct 35(15):1723–1741

    Article  MATH  Google Scholar 

  54. Luciano R, Marfia S, Sacco E (2002) Reinforcement of masonry arches by FRP materials: experimental tests and numerical investigations. In: Proceedings of ICCI’02 international conference on FRP composite in infrastructures, San Francisco, USA

  55. Mazzotti C, Savoia M, Ferracuti B (2009) A new single-shear set-up for stable debonding of FRP–concrete joints. Constr Build Mater 23(2009):1529–1537

    Article  Google Scholar 

  56. Micelli F, De Lorenzis L, La Tegola A (2004) FRP-confined masonry columns under axial loads: experimental results and analytical model. Mason Int 17(3):95–108

    Google Scholar 

  57. Mosallam AS (2007) Out-of-plane flexural behavior of unreinforced red brick walls strengthened with FRP composites. Compos B 38:559–574

    Article  Google Scholar 

  58. Nakaba K, Kanakubo T, Furuta T, Yoshizawa H (2001) Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Struct J 98(3):359–367

    Google Scholar 

  59. Nurchi A, Valdes M (2005) Strengthening of stone masonry columns by means of cement-based composite wrapping. In: Proceedings of the 3rd international conference on composites in construction—CCC2005, Lyon, France

  60. Oliveira DV, Basilio I, Lourenço PB (2010) Experimental behavior of FRP strengthened masonry arches. ASCE J Compos Constr 14(3):312–322

    Article  Google Scholar 

  61. Oliveira DV, Basilio I, Lourenço PB (2011) Experimental bond behavior of FRP sheets glued on brick masonry. ASCE J Compos Constr 15(1):32–41

    Article  Google Scholar 

  62. Panizza M, Garbin E, Valluzzi MR, Modena C (2010) Experimental investigation on local aspects of the FRP strengthening of masonry arches. In: 8th Monubasin symposium ‘monuments in the Mediterranean basin’, Patras, Greece, May 31–June 2, 2010

  63. Papanicolaou CG, Triantafillou TC, Karlos K, Papathanasiou M (2007) Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. RILEM Mater Struct 40(10):1081–1097

    Article  Google Scholar 

  64. Papanicolaou CG, Triantafillou TC, Papathanasiou M, Karlos K (2008) Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. RILEM Mater Struct 41(1):143–157

    Article  Google Scholar 

  65. Papanicolaou CG, Triantafillou TC, Lekka M (2011) Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Constr Build Mater 25:504–514

    Article  Google Scholar 

  66. Poggi C, Fava G (2007) COKIT: un sistema per la caratterizzazione dei materiali compositi per le costruzioni. In: Il controllo di accettazione di materiali fibrorinforzati per il rinforzo strutturale. I quaderni tecnici di Assocompositi, vol I, Tecnedit Ed (in Italian)

  67. Prota A, Marcari G, Fabbrocino G, Manfredi G, Aldea C (2006) Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix-grid composites. ASCE J Compos Constr 10(3):223–233

    Article  Google Scholar 

  68. Schwegler G (1994) Masonry construction strengthened with fiber composites in seismically endangered zones. In: Proceedings of the 10th European conference on earthquake engineering, Rotterdam, The Netherlands, pp 454–458

  69. Shrive NG (2006) The use of fibre reinforced polymers to improve seismic resistance of masonry. Constr Build Mater 20(4):269–277

    Article  Google Scholar 

  70. Täljsten B (1997) Defining anchor lengths of steel and CFRP plates bonded to concrete. Int J Adhesion Adhesives 19:319–327

    Article  Google Scholar 

  71. Triantafillou TC (1998) Strengthening of masonry structures using epoxy-bonded FRP laminates. ASCE J Compos Constr 2(2):96–104

    Article  Google Scholar 

  72. Triantafillou TC, Fardis MN (1997) Strengthening of historic masonry structures with composite materials. RILEM Mater Struct 30:486–496

    Article  Google Scholar 

  73. UNI 11128 (2004) Prodotti da costruzione di laterizio – Tavelloni, tavelle e tavelline – Terminologia, requisiti e metodi di prova (in Italian)

  74. UNI 6556 (1976) Prove sui calcestruzzi. Determinazione del modulo elastico secante a compressione (in Italian)

  75. UNI 8942-3 (1986) Prodotti di laterizio per murature. Metodi di prova (in Italian)

  76. Valluzzi MR (2008) Strengthening of masonry structures with fibre reinforced plastics: from modern conception to historical building preservation. In: Structural analysis of historic construction—SAHC08, vol 1, Bath (UK), pp 33–45

  77. Valluzzi MR, Valdemarca M, Modena C (2001) Behavior of brick masonry vaults strengthened by FRP laminates. ASCE J Compos Constr 5(3):163–169

    Article  Google Scholar 

  78. Valluzzi MR, Tinazzi D, Modena C (2002) Shear behavior of masonry panels strengthened by FRP laminates. Constr Build Mater Spec Issue 16(7):409–416

    Article  Google Scholar 

  79. Velazquez-Dimas JI, Ehsani MR, Saadatmanesh H (2000) Out-of-plane behavior of brick masonry walls strengthened with fiber composites. ACI Struct J 97(3):377–387

    Google Scholar 

  80. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  Google Scholar 

  81. Yao J, Teng JG, Chen JF (2004) Experimental study on FRP-to-concrete bonded joints. Compos B 36:99–113

    Article  Google Scholar 

  82. Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A 38:1569–1580

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the companies which supported the whole experimental project: Fidia Technical Global Service and SGM Laboratory, Perugia (Italy), for providing composite materials and for making available facilities for making specimens, respectively; and SanMarco-Terreal Italia, Noale (Venice, Italy) for providing the bricks. In particular, grateful thanks also go to those members of the above companies involved in the project: Paolo Casadei (Fidia Technical Global Service, Italy) and Franco Favaro (SanMarco-Terreal Italia, Italy), as well as all the experts, laboratory technicians and undergraduates and Ph.D. students from the participating institutions, including: Stanisław Kańka (Cracow University of Technology, Poland); Alberto Zinno, Gaetano Manfredi (University of Naples, Italy); Kyriakos Karlos (University of Patras, Greece); Samuele Biondi, Ana Di Evangelista, Elena Candigliota, Carlo Di Cintio (University “G. D’Annunzio” of Chieti – Pescara, Italy); Giuseppe Paci, Antonio Borri, Alessio Molinari (University of Perugia, Italy); Zila Rinaldi (University of Roma Tor Vergata, Italy); Maura Imbimbo (University of Cassino and Southern Lazio); Irene Carbone (University Roma Tre, Italy); Maria Antonietta Aiello (University of Salento, Italy); José-Tomás San-José, Pello Larrinaga, Josu Lucena (Tecnalia Research & Innovation, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Valluzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valluzzi, M.R., Oliveira, D.V., Caratelli, A. et al. Round Robin Test for composite-to-brick shear bond characterization. Mater Struct 45, 1761–1791 (2012). https://doi.org/10.1617/s11527-012-9883-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9883-5

Keywords

Navigation