Skip to main content
Log in

A generalized Drucker–Prager viscoplastic yield surface model for asphalt concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Argyris JH, Faust G, Szimmat J, Warnke EP, Willam KJ (1974) Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl Eng Des 28:42–75. doi:10.1016/0029-5493(74)90088-0

    Article  Google Scholar 

  2. Bahuguna S, Panoskaltsis VP, Papoulia KD (2006) Identification and modeling of permanent deformations of asphalt concrete. J Eng Mech 132:231–239. doi:10.1061/(asce)0733-9399(2006)132:3(231

    Article  Google Scholar 

  3. Bardet JP (1990) Lode dependences for isotropic pressure-sensitive elastoplastic materials. J Appl Mech 57:498–506

    Article  Google Scholar 

  4. Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J Solids Struct 41:2855–2878. doi:10.1016/j.ijsolstr.2003.12.024

    Article  MATH  MathSciNet  Google Scholar 

  5. Birgisson B, Soranakom C, Napier J, Roque R (2003) Simulation of fracture initiation in hot-mix asphalt mixtures. Transp Res Rec J Transp Res Board 1849:183–190. doi:10.3141/1849-20

  6. Bonaquist R, Witczak M (1996) Plasticity modeling applied to the permanent deformation response of granular materials in flexible pavement systems. Transp Res Rec J Transp Res Board 1540:7–14. doi:10.3141/1540-02

  7. Chen WF, Mizuno E (1990) Nonlinear analysis in soil mechanics, theory and implementation. Elsevier Science Ltd., Amsterdam

    Google Scholar 

  8. Darabi MK, Al-Rub RKA, Masad EA, Huang C-W, Little DN (2011) A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. Int J Solids Struct 48:191–207. doi:10.1016/j.ijsolstr.2010.09.019

    Article  MATH  Google Scholar 

  9. Darabi MK, Al-Rub RKA, Masad EA, Huang C-W, Little DN (2012a) A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int J Plast 35:100–134. doi: http://dx.doi.org/10.1016/j.ijplas.2012.03.001

  10. Darabi MK, Al-Rub RKA, Masad EA, Little DN (2012b) A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part ii: numerical aspects and application to asphalt concrete. Int J Plast 35:67–99. doi: http://dx.doi.org/10.1016/j.ijplas.2012.02.003

  11. Desai CS, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Anal Meth Geomech 10:225–257

    Article  MATH  Google Scholar 

  12. Dessouky SH, Masad EA (2006) The development of a microstructural-based continuum model for hot mix asphalt. In: Lytton RL (ed) Asphalt concrete: simulation, modeling, and experimental characterization. Geotechnical special publication. American Society of Civil Engineers, Baton Rouge, pp 44–52

  13. Drucker DC (1959) A definition of stable inelastic material. J Appl Mech 26:101–106

    MATH  MathSciNet  Google Scholar 

  14. Fwa TF, Tan SA, Low BH (1997) Relating triaxial test properties of asphalt mixtures to mix parameters determined by marshall stability test. J Test Eval 25:471–478

    Article  Google Scholar 

  15. Fwa TF, Tan SA, Zhu LY (2004) Rutting prediction of asphalt pavement layer using c-phi model. J Transp Eng 130:675–683. doi:10.1061/(asce)0733-947x(2004)130:5(675)

    Article  Google Scholar 

  16. Gao Z, Zhao J, Yao Y (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solid Struct 47:3166–3185. doi: http://dx.doi.org/10.1016/j.ijsolstr.2010.07.016

  17. Haythornthwaite RM (1985) A family of smooth yield surfaces. Mech Res Commun 12:87–91

    Article  MATH  Google Scholar 

  18. Huang B, Mohammad L, Wathugala G (2004) Application of a temperature dependent viscoplastic hierarchical single surface model for asphalt mixtures. J Mater Civ Eng 16:147–154

    Article  Google Scholar 

  19. Jiang J, Pietruszczak S (1988) Convexity of yield loci for pressure sensitive materials. Comput Geotech 5:51–63

    Article  Google Scholar 

  20. Kong Y, Zhao J, Yao Y (2013) A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotech 8:665–673. doi:10.1007/s11440-012-0202-7

    Article  Google Scholar 

  21. Lin F-B, Bazant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech 112:1259–1262

    Article  Google Scholar 

  22. Maiolino S (2005) Proposition of a general yield function in geomechanics. CR Mec 333:279–284

    Article  MATH  Google Scholar 

  23. Maiolino S, Luong MP (2009) Measuring discrepancies between coulomb and other geotechnical criteria: Drucker–Prager and Matsuoka–Nakai. Paper presented at the 7th Euromech solid mechanics conference, Lisbon, Portugal 2009-09-07

  24. Masad E, Dessouky S, Little D (2007) Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. Int J Geomech 7:119–130

    Article  Google Scholar 

  25. Masad E, Muhunthan B, Shashidhar N, Harman T (1998) Aggregate orientation and segregation in asphalt concrete. In: Papagiannakis AT, Schwartz CW (eds) Application of geotechnical principles in pavement engineering. American Society of Civil Engineers, Boston, pp 69–80 (geotechnical special publication)

    Google Scholar 

  26. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Japan Soc Civil Eng 232:59–70

  27. Matsuoka H, Nakai T (1985) Relationship among Tresca, Mises, Mohr–Coulomb and Matsuoka-Nakai failure criteria. Soils Found 25:123–128

    Article  Google Scholar 

  28. Mortara G (2008) A new yield and failure criterion for geomaterials. Geotechnique 58:125–132

    Article  Google Scholar 

  29. Mortara G (2010) A yield criterion for isotropic and cross-anisotropic cohesive–frictional materials. Int J Numer Anal Meth Geomech 34:953–977. doi:10.1002/nag.846

    MATH  Google Scholar 

  30. Muraya PM, Molenaar AAA, van de Ven MFC (2009) Contribution of asphalt mix components to permanent deformation resistance. In: Tutumluer E, AlQadi IL (eds) 8th international conference on the bearing capacity of roads, railways and airfields, Champaign, IL, 2009, pp 259–268

  31. Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16:35–45

    Article  MathSciNet  Google Scholar 

  32. Oda M, Nakayama H (1989) Yield function for soil with anisotropic fabric. J Eng Mech 115:89–104

    Article  Google Scholar 

  33. Oh J, Lytton RL, Fernando EG (2006) Modeling of pavement response using nonlinear cross-anisotropy approach. J Trans Eng 132:458–468

    Article  Google Scholar 

  34. Park D, Martin A, Lee H, Masad E (2005) Characterization of permanent deformation of an asphalt mixture using a mechanistic approach. KSCE J Civil Eng 9:213–218. doi:10.1007/bf02829052

    Article  Google Scholar 

  35. Pickering DJ (1970) Anisotropic elastic parameters for soil. Geotechnique 20:271–276

    Article  Google Scholar 

  36. Rutherford CJ (2012) Development of a multi-directional direct simple shear testing device for characterization of the cyclic shear response of marine clays. Ph.D. dissertation. Texas A&M University, College Station, Texas, USA

  37. Rutherford CJ, Biscontin G (2013) Development of a multi-directional simple shear testing device. Geotech Test J. doi: 10.1520/GTJ20120173

  38. Saadeh S, Masad E, Little D (2007) Characterization of asphalt mix response under repeated loading using anisotropic nonlinear viscoelastic–viscoplastic model. J Mater Civ Eng 19:912–924

    Article  Google Scholar 

  39. Seibi A, Sharma M, Ali G, Kenis W (2001) Constitutive relations for asphalt concrete under high rates of loading. Transp Res Rec J Transp Res Board 1767:111–119. doi:10.3141/1767-14

  40. Shaverdi H, Taha MR, Kalantary F (2013) Micromechanical formulation of the yield surface in the plasticity of granular materials. J Appl Math 2013:7. doi:10.1155/2013/385278

    Article  Google Scholar 

  41. Somasundaram S, Desai C (1988) Modeling and testing for anisotropic behavior of soils. J Eng Mech 114:1473–1496. doi:10.1061/(ASCE)0733-9399(1988)114:9(1473

    Article  Google Scholar 

  42. Sousa JB, Weissman SL (1994) Modeling permanent deformation of asphalt-aggregate mixes. J Assoc Asphalt Pav Technol 63:224–257

    Google Scholar 

  43. Subramanian V, Guddati MN, Richard Kim Y (2013) A viscoplastic model for rate-dependent hardening for asphalt concrete in compression. Mech Mater 59:142–159. doi: http://dx.doi.org/10.1016/j.mechmat.2012.10.003

  44. Sun L, Zhu H, Zhu Y (2013) Two-stage viscoelastic–viscoplastic damage constitutive model of asphalt mixtures. J Mater Civ Eng 25:958–971. doi:10.1061/(ASCE)MT.1943-5533.0000646

    Article  Google Scholar 

  45. Tan S-A, Low B-H, Fwa T-F (1994) Behavior of asphalt concrete mixtures in triaxial compression. J Test Eval 22:195–203

    Article  Google Scholar 

  46. Tashman L, Masad E, Peterson B, Saleh H (2002) Internal structure analysis of asphalt mixes to improve the simulation of superpave gyratory compaction to field conditions. J Assoc Asphalt Pav Technol 70:605–645

    Google Scholar 

  47. Tashman L, Masad E, Zbib H, Little D, Kaloush K (2004) Anisotropic viscoplastic continuum damage model for asphalt mixes. In: Recent advances in materials characterization and modeling of pavement systems. 15th engineering mechanics division conference, New York, NY, 2004. American Society of Civil Engineers, New York, pp 111–125

  48. Tobita Y (1989) Fabric tensors in constitutive equations for granular materials. Soils Found 29:91–104

    Article  Google Scholar 

  49. Tobita Y, Yanagisawa E (1988) Contact tensor in constitutive model for granular materials. In: Satake M, Jenkins JT (eds) Micromechanics of granular materials. Elsevier Science, Amsterdam, pp 263–270

    Google Scholar 

  50. Tobita Y, Yanagisawa E (1992) Modified stress tensors for anisotropic behavior of granular materials. Soils Found 32:85–99

    Article  Google Scholar 

  51. TxDOT (2004) Standard specifications for construction and maintenance of highways, streets, and bridges. Texas Department of Transportation, Austin, TX

  52. TxDOT (2008) Test procedure for design of bituminous mixtures. Texas Department of Transportation, Austin, TX

  53. van Eekelen HAM (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4:89–101. doi:10.1002/nag.1610040107

    Article  MATH  Google Scholar 

  54. Wang L, Hoyos LR, Wang J, Voyiadjis G, Abadie C (2005) Anisotropic properties of asphalt concrete: characterization and implications for pavement design and analysis. J Mater Civ Eng 17:535–543

    Article  Google Scholar 

  55. Wathugala G, Desai C (1993) Constitutive model for cyclic behavior of clays. I: theory. J Geotech Eng 119:714–729. doi:10.1061/(ASCE)0733-9410(1993)119:4(714)

    Article  Google Scholar 

  56. Weissman SL, Harvey J, Sackman JL, Long F (1999) Selection of laboratory test specimen dimension for permanent deformation of asphalt concrete pavements. Transp Res Rec J Transp Res Board 1681:113–120. doi:10.3141/1681-14

  57. Yang ZX, Lit XS, Yang J (2008) Quantifying and modeling fabric anisotropy of granular soils. Geotechnique 58:237–248

    Article  Google Scholar 

  58. Zhang Y, Luo R, Lytton RL (2011) Microstructure-based inherent anisotropy of asphalt mixtures. J Mater Civ Eng 23:1473–1482

    Article  Google Scholar 

  59. Zhang Y, Luo R, Lytton RL (2012) Anisotropic viscoelastic properties of undamaged asphalt mixtures. J Trans Eng 138:75–89

    Article  Google Scholar 

  60. Zhang Y, Luo R, Lytton RL (2013) Characterization of viscoplastic yielding of asphalt concrete. Construct Build Mater 47:671–679. doi: http://dx.doi.org/10.1016/j.conbuildmat.2013.05.075

  61. Zhu H, Sun L (2013) A viscoelastic–viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. International J Plast 40:81–100. doi: http://dx.doi.org/10.1016/j.ijplas.2012.07.005

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the U.S. Department of Transportation (USDOT) and the Texas state general revenue funds through Southwest Region University Transportation Center (SWUTC No. 600451-00006). The validation shear tests of this study are based upon the work supported by the National Science Foundation under Grant No. 0943140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Zhang.

Appendix: derivation of function \(\rho \left( {d,\theta } \right)\) in GD–P model

Appendix: derivation of function \(\rho \left( {d,\theta } \right)\) in GD–P model

The resistance of an asphalt concrete to permanent deformation is provided by the material cohesion of asphalt mastic and the friction of aggregate skeleton. In general, material cohesion is an isotropic property and it only affects the size of a yield surface. The friction of the aggregate skeleton contributes the size and shape of the yield surface. Since \(\rho \left( {d,\theta } \right)\) in GD–P model determines the shape of the yield surface on the octahedral plane, it should depend only on the aggregate skeleton of the mixture which behaves similarly to unbound aggregates or sands. This thinking urges the authors to take advantage of the yield surface model for cohesionless sand to model the yielding of aggregate skeleton of the asphalt concrete.

Matsuoka–Nakai [26, 27] model has been used to model the yield surface of the cohesionless sands and it is an inherently smooth and convex yield surface. Using the modified stress invariants, the Matsuoka–Nakai model is expressed as:

$$\frac{{\bar{I}_{1} \bar{I}_{2} }}{{\bar{I}_{3} }} = k$$
(25)

where \(\bar{I}_{1}\) (\(= \bar{\sigma }_{kk}\)), \(\bar{I}_{2}\) (\(= \tfrac{1}{2}\left( {\bar{\sigma }_{ii} \bar{\sigma }_{jj} - \bar{\sigma }_{ij} \bar{\sigma }_{ji} } \right)\)) and \(\bar{I}_{3}\) (\(= \det \left( {\bar{\sigma }_{ij} } \right)\)) are first, second and third invariants of the modified stress tensor (\(\bar{\sigma }_{ij}\)). Parameter k can be expressed in terms of the material internal friction angle (or the extension ratio d) as follows [3]:

$$k = \frac{{9 - \sin^{2} \phi }}{{1 - \sin^{2} \phi }} = \frac{9d}{{\left( {2d - 1} \right)\left( {2 - d} \right)}}$$
(26)

To convert M–N model to an expression in terms of \(\sqrt {\bar{J}_{2} }\) and \(\bar{I}_{1}\) that are the first order of the stress, \(\bar{I}_{2}\) and \(\bar{I}_{3}\) are written as:

$$\bar{I}_{2} = \frac{1}{3}\bar{I}_{1}^{2} - \bar{J}_{2}$$
(27)
$$\bar{I}_{3} = \bar{J}_{3} - \frac{1}{3}\bar{I}_{1} \bar{J}_{2} + \frac{1}{27}\bar{I}_{1}^{3}$$
(28)

Substituting Eqs. 26, 27, and 27 into Eq. 25 obtains:

$$2\left( {d - 1} \right)^{2} \bar{I}_{1}^{3} - 6\left( {d^{2} - d + 1} \right)\bar{I}_{1} \bar{J}_{2} + 27d\bar{J}_{3} = 0$$
(29)

Equations 3 and 8 in the text relate \(\alpha\) to \(d\) as follows:

$$\alpha = \frac{1 - d}{\sqrt 3 d}$$
(30)

Introducing Eq. 30 and the Lode angle defined by Eq. 7 into Eq. 29 gives:

$$d^{2} \left( {\alpha \bar{I}_{1} } \right)^{3} - \left( {d^{2} - d + 1} \right)\bar{J}_{2} \left( {\alpha \bar{I}_{1} } \right) + \left( {1 - d} \right)\left( {\bar{J}_{2} } \right)^{{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} \cos \left( {3\theta } \right) = 0$$
(31)

Equation 31 is a transformed expression for the Matsuoka–Nakai model, which does not account for the temperature and strain rate dependent cohesion and strain hardening. To consider these material properties of asphalt concrete, the term \(\kappa a_{T} a_{{\dot{\varepsilon }}}\) is added and Eq. 31 becomes:

$$d^{2} \left( {\alpha \bar{I}_{1} + \kappa a_{T} a_{{\dot{\varepsilon }}} } \right)^{3} - \left( {d^{2} - d + 1} \right)\bar{J}_{2} \left( {\alpha \bar{I}_{1} + \kappa a_{T} a_{{\dot{\varepsilon }}} } \right) + \left( {1 - d} \right)\left( {\bar{J}_{2} } \right)^{{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} \cos \left( {3\theta } \right) = 0$$
(32)

To acquire an expression with the first order of stress, Eq. 32 is treated as a cubic equation that has a variable of \(\alpha \bar{I}_{1} + \kappa a_{T} a_{{\dot{\varepsilon }}}\). Solving this cubic equation gives a new yield surface function as:

$$\sqrt {\bar{J}_{2} } \rho \left( {\theta ,\;d} \right) - \alpha \bar{I}_{1} - \kappa a_{T} a_{{\dot{\varepsilon }}} = 0$$
(33)

where

$$\rho \left( {\theta ,\;d} \right) = \mu \cos \left[ {\tfrac{1}{3}\arccos \left( {\gamma \cos 3\theta } \right)} \right]$$
(34)

and

$$\;\left\{ \begin{gathered} \mu = \frac{{2\sqrt {1 - d + d^{2} } }}{\sqrt 3 d} \hfill \\ \gamma = - \frac{3\sqrt 3 }{2}\frac{{\left( {1 - d} \right)d}}{{\left( {1 - d + d^{2} } \right)^{{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} }} \hfill \\ \end{gathered} \right.\;\;\;\;\;\;\left( {d = \frac{3 - \sin \phi }{3 + \sin \phi }} \right)$$
(35)

Equation 33 is the GD–P yield surface model proposed in this study. Parameters \(\mu\) and \(\gamma\) are related to \(d\) that is a function of internal friction angle (\(\phi\)). Equations 34 and 35 demonstrate that the shape of GD–P model on the octahedral plane only depends on the internal friction angle of the material that is determined by aggregate skeleton. \(\theta\) is the Lode angle and \(\theta\) = 0 indicates triaxial compression and \(\theta\) = \(\tfrac{\pi }{3}\) implies triaxial extension. Using Eqs. 34 and 35, one can get the following relations:

$$\left\{ \begin{gathered} \rho \left( {\theta = 0} \right) = \mu \cos \left[ {\frac{1}{3}\arccos \left( \gamma \right)} \right] = 1\;\;\;\;\;\;\;\;\;\;{\text{in}}\;{\text{compression}} \hfill \\ \rho \left( {\theta = \frac{\pi }{3}} \right) = \mu \cos \left[ {\frac{1}{3}\arccos \left( { - \gamma } \right)} \right] = \frac{1}{d}\;\;\;\;{\text{in}}\;{\text{extension}} \hfill \\ \end{gathered} \right.$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Bernhardt, M., Biscontin, G. et al. A generalized Drucker–Prager viscoplastic yield surface model for asphalt concrete. Mater Struct 48, 3585–3601 (2015). https://doi.org/10.1617/s11527-014-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0425-1

Keywords

Navigation