Skip to main content
Log in

Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, geopolymers based on two different fly ash samples were exposed to sodium sulfate (Na2SO4) solution (50 g/l) over a period of 365 days. It was found that sulfate solution attack caused a small decrease in strength of geopolymer mortars. Analysis of the Na2SO4 solutions by optical emission spectroscopy indicated that exposing of the geopolymer samples to the Na2SO4 solution had caused leaching of one of the elements of the aluminosilicate gel, silicon. Mineralogical analyses of geopolymer samples did not show formation of any new phases due to a reaction with sulfate ions. Changes in aluminosilicate geopolymer gel due to sulfate attack were investigated by electron microscopy and nuclear magnetic resonance. It was found that treatment of geopolymer samples with the sulfate solution caused breaking of –Si–O–Si– bonds in aluminosilicate gel structure. Breaking of the –Si–O–Si– bonds and leaching of Si were consequences of the increase in the pH value of sulfate solution during testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Deventer JSJ, Provis JL, Duxson P, Brice DG (2010) Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor 1:145–155

    Article  Google Scholar 

  2. Provis JL, van Deventer JSJ (2009) Geopolymers, structure, processing, properties and industrial applications. Woodhead Publishing, Cambridge

    Google Scholar 

  3. Glasser FP, Marchand J, Samson E (2008) Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cem Concr Res 38:226–246

    Article  Google Scholar 

  4. Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34:1275–1296

    Article  Google Scholar 

  5. Santhanam M, Cohen MD, Olek J (2001) Sulfate attack research—whither now? Cem Concr Res 31:845–851

    Article  Google Scholar 

  6. Messad S, Carcasses M, Linger L (2009) Design of an accelerated test method for external sulfate attack. In: Alexander MG and Bertron A (ed) Concrete in Aggressive Aqueous Environments—Performance, Testing and Modeling, RILEM TC 211-PAE Final Conference 3–5 June 2009, RILEM Publications SARL, Toulouse

  7. SRPS CEN/TR 15697 (2009) Cement—performance testing for sulfate resistance—state of the art report

  8. RILEM Technical Committee (2013) DTA: Durability testing of alkali-activated materials, http://www.rilem.org/gene/main.php?base=8750&gp_id=290. Accessed 19 August 2013

  9. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Chemical stability of cementitious materials based on metakaolin. Cem Concr Res 29:997–1004

    Article  Google Scholar 

  10. Puertas F, de Gutierrez R, Fernandez-Jimenez A, Delvasto S, Maldonado J (2002) Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater Constr 52(267):55–71

    Article  Google Scholar 

  11. Fernandez-Jimenez A, Garcıa-Lodeiro I, Palomo A (2007) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42:3055–3065

    Article  Google Scholar 

  12. Sata V, Sathonsaowaphak A, Chindaprasirt P (2012) Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cem Concr Comp 34:700–708

    Article  Google Scholar 

  13. Škvara F, Jilek T, Kopecky L (2005) Geopolymer materials based on fly ash. Ceram Silik 49(3):195–204

    Google Scholar 

  14. Bakharev T (2005) Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 35:1233–1246

    Article  Google Scholar 

  15. Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JSJ (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46:361–373

    Article  Google Scholar 

  16. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct 46:375–381

    Article  Google Scholar 

  17. Criado M, Fernandez-Jimenez A, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio part I: FTIR study. Microporous Mesoporous Mater 106:180–191

    Article  Google Scholar 

  18. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23(15):8170–8179

    Article  Google Scholar 

  19. Lloyd RR, Provis JL, van Deventer JSJ (2009) Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder. J Mater Sci 44:620–631

    Article  Google Scholar 

  20. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7):3028–3036

    Article  Google Scholar 

  21. Criado M, Fernandez-Jimenez A, Palomo A, Sobrados I, Sanz J (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey. Microporous Mesoporous Mater 109:525–534

    Article  Google Scholar 

  22. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42:1242–1251

    Article  Google Scholar 

  23. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181(1–3):35–42

    Article  Google Scholar 

  24. Baščarević Z, Komljenović M, Miladinović Z, Nikolić V, Marjanović N, Žujović Z, Petrović R (2013) Effects of the concentrated NH4NO3 solution on mechanical properties and structure of the fly ash based geopolymers. Constr Build Mater 41:570–579

    Article  Google Scholar 

  25. SRPS EN 196-1 (2008), Methods of testing cement—part 1: determination of strength

  26. Massiot D, Fayon F, Capron M, King I, Le Calve S, Alonso B et al (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76

    Article  Google Scholar 

  27. ASTM C618—12 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

  28. Lloyd RR, Provis JL, van Deventer JSJ (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res 40:1386–1392

    Article  Google Scholar 

  29. Ravenelle RM, Schüβler F, D’Amico A, Danilina N, van Bokhoven JA et al (2010) Stability of zeolites in hot liquid water. J Phys Chem C 114:19582–19595

    Article  Google Scholar 

  30. Hamilton JP, Brantley SL, Pantano CG, Criscenti LJ, Kubicki JD (2001) Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution. Geochim Cosmochim Acta 65(21):3683–3702

    Article  Google Scholar 

  31. Groen JC, Abelló S, Villaescusa LA, Pérez-Ramírez J (2008) Mesoporous beta zeolite obtained by desilication. Microporous Mesoporous Mater 114:93–102

    Article  Google Scholar 

  32. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem Eur J 11:4983–4994

    Article  Google Scholar 

  33. Bonilla A, Baudouin D, Pérez-Ramírez J (2009) Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. J Catal 265:170–180

    Article  Google Scholar 

  34. Temuujin J, Minjigmaa A, Lee M, Chen-Tan N, van Riessen A (2011) Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cem Concr Comp 33:1086–1091

    Article  Google Scholar 

  35. Sindhunata Provis JL, Lukey GC, Xu H, van Deventer JSJ (2008) Structural evolution of fly ash based geopolymers in alkaline environments. Ind Eng Chem Res 47:2991–2999

    Article  Google Scholar 

  36. Mangat PS, El-Khatib JM (1992) Influence of initial curing on sulphate resistance of blended cement concrete. Cem Concr Res 22:1089–1100

    Article  Google Scholar 

  37. Higgins DD (2003) Increased sulfate resistance of ggbs concrete in the presence of carbonate. Cem Concr Comp 25:913–919

    Article  MathSciNet  Google Scholar 

  38. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656

    Article  Google Scholar 

  39. Engelhardth G, Michel D (1987) High resolution solid state NMR of silicates and zeolites. Wiley, New York

    Google Scholar 

  40. Fernandez-Jimenez A, Palomo A, Sobrados I, Sanz J (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91:111–119

    Article  Google Scholar 

  41. Fernandez-Jimenez A, Palomo A (2003) Characterization of fly ashes potential reactivity as alkaline cements. Fuel 82:2259–2265

    Article  Google Scholar 

  42. Fernandez-Jimenez A, de la Torre AG, Palomo A, Lopez-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash part I. Potential ash reactivity. Fuel 85:625–634

    Article  Google Scholar 

  43. Bakharev T, Sanjayan JG, Cheng Y-B (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out within the Project TR34026 funded by the Ministry of Education, Science and Technological Development, Republic of Serbia. Authors are grateful to Dr. Aleksandra Rosić (Faculty of Mining and Geology, Belgrade University) for XRD analyses, Ljiljana Miličić (Institute for testing materials Serbia) for XRF analyses, MSc Ivona Janković-Častvan (Faculty of Technology and Metallurgy, Belgrade University) for porosity measurements and Prof. Miroslav Nikolić (Plant and Soil Laboratory, Institute for Multidisciplinary Research) for ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvezdana Baščarević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baščarević, Z., Komljenović, M., Miladinović, Z. et al. Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers. Mater Struct 48, 683–697 (2015). https://doi.org/10.1617/s11527-014-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0325-4

Keywords

Navigation