Skip to main content

Advertisement

Log in

Environment versus sustainable energy: The case of lead halide perovskite-based solar cells

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Analyzing the repetitive pattern of historical lead poisoning that to present-day has shaped our legislatorial systems regarding lead consumption, this work focuses on creating awareness and caution toward lead halide perovskite commercialization while concurrently pointing out considerations and ambiguity in policies and regulations.

Lead halide perovskites have caused a paradigm shift in state-of-the-art photovoltaic technology half a decade ago and have gained tremendous momentum ever since. Given their seemingly imminent commercialization, rigorous scrutiny regarding their potential environmental impact is becoming increasingly relevant. In light of the current need for sustainable energy resources, several start-up and spin-off companies have been established, initially promising modules on the market by the end of 2017. On the downside, lead representing approximately one third by weight of the absorber layer in such photovoltaic devices is enough reason to become wary about the potential environmental impact of their large-scale implementation. Whilst many have wondered where the acceptable boundaries lie regarding lead consumption, it remains a focal point in many discussions, as it seems almost unattainable to ban lead usage from our society. Currently listed as one of the ten chemicals of major health concern by the World Health Organization, the magnitude of misgivings expands even more as recent studies also demonstrate promising applications of lead halide perovskites in light emitting diodes, lasers, batteries, and photodetectors. Hence, there is no doubt that a discussion should be commenced on how to assess and handle the impact of lead in a new technology of such high potential.

By reflecting on the historical experience gained from anthropogenic lead poisoning that is still shaping our legislatorial systems at present-day, this work investigates and carefully scrutinizes current legislation that governs the exploitation of lead halide perovskites in optoelectronic applications. Analyzing the repetitive pattern of historical lead consumption, focus is extended on creating awareness and caution toward lead halide perovskite commercialization while concurrently pointing out considerations and ambiguity in policies and regulations. Ultimately, this work aims to initialize a discussion on “if” and “how” this burgeoning class of materials can enter the consumer market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Table 1

Similar content being viewed by others

References

  1. Hong S., Candelone J-P., Patterson C.C., and Boutron C.F.: Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1844 (1994).

    CAS  Google Scholar 

  2. International Lead and Zinc Study Group: Lead and zinc statistics (2017). Available at: http://www.ilzsg.org/static/statistics.aspx?from=1 (accessed July 31, 2017).

    Google Scholar 

  3. Zhang W., Eperon G.E., and Snaith H.J.: Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    CAS  Google Scholar 

  4. Manser J.S., Christians J.A., and Kamat P.V.: Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    CAS  Google Scholar 

  5. Stranks S.D. and Snaith H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  6. Kojima A., Teshima K., Shirai Y., and Miyasaka T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  7. Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., and Snaith H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Google Scholar 

  8. Bi Y., Hutter E.M., Fang Y., Dong Q., Huang J., and Savenije T.J.: Charge carrier lifetimes exceeding 15 µs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    CAS  Google Scholar 

  9. Herz L.M.: Fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS  Google Scholar 

  10. Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J.P., Leijtens T., Herz L.M., Petrozza A., and Snaith H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Google Scholar 

  11. National Renewable Energy Laboratory: Research cell record efficiency chart (2017). Available at: http://www.nrel.gov/pv/ (accessed 2 December 2017).

    Google Scholar 

  12. Brenner T.M., Egger D.A., Kronik L., Hodes G., and Cahen D.: Hybrid organic—inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  13. Oxford Photovoltaics: Oxford PV reveals breakthrough in efficiency of new class of solar cell (2013). Available at: http://www.oxfordpv.com/News/20130610-Oxford-PV-reveals-breakthrough-in-efficiency-of-new-class-of-solar-cell (accessed July 17, 2017).

    Google Scholar 

  14. The Wall Street Journal: Perovskite offers shot at cheaper solar energy (2014). Available at: https://online.wsj.com/articles/perovskite-offers-shot-at-cheaper-solar-energy-1411937799 (accessed July 17, 2017).

    Google Scholar 

  15. Van Noorden R.: Cheap Solar Cells Tempt Businesses (Macmillan Publishers Ltd., London, England, 2014).

    Google Scholar 

  16. Babayigit A., Thanh D.D., Ethirajan A., Manca J., Muller M., Boyen H-G., and Conings B.: Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 18721 (2016).

    CAS  Google Scholar 

  17. Benmessaoud I.R., Mahul-Mellier A-L., Horváth E., Maco B., Spina M., Lashuel H.A., and Forró L.: Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies. Toxicol. Res. 5, 407–419 (2016).

    CAS  Google Scholar 

  18. Babayigit A., Ethirajan A., Muller M., and Conings B.: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    CAS  Google Scholar 

  19. Stos-Gale Z. and Gale N.H.: Sources of galena, lead and silver in Predynastic Egypt. Revue d’Archéométrie 1, 285–296 (1981).

    Google Scholar 

  20. Gale N.H. and Stos-Gale Z.: Lead and silver in the ancient Aegean. Sci. Am. 244, 176–192 (1981).

    CAS  Google Scholar 

  21. Haynes W.M.: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Florida, 2014).

    Google Scholar 

  22. Gale W.F. and Totemeier T.C.: Smithells Metals Reference Book (Butterworth-Heinemann, Bath, 2003).

    Google Scholar 

  23. Guruswamy S.: Engineering Properties and Applications of Lead Alloys (Marcel Dekker, New York, 1999).

    Google Scholar 

  24. Patterson C.: Age of meteorites and the earth. Geochim. Cosmochim. Acta 10, 230–237 (1956).

    CAS  Google Scholar 

  25. Davidson A., Ryman J., Sutherland C.A., Milner E.F., Kerby R.C., Teindl H., Melin A., and Bolt H.M.: Lead. In Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000), pp. 1–50.

    Google Scholar 

  26. Patterson C., Ericson J., Manea-Krichten M., and Shirahata H.: Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci. Total Environ. 107, 205–236 (1991).

    CAS  Google Scholar 

  27. Flegal A.R. and Smith D.R.: Lead levels in preindustrial humans. N. Engl. J. Med. 326, 1293–1294 (1992).

    CAS  Google Scholar 

  28. World Health Organisation: Environmental health criteria 3: Lead (1977). Available at: http://www.inchem.org/documents/ehc/ehc/ehc003.htm (accessed July 17, 2017).

    Google Scholar 

  29. World Health Organisation: Exposure to lead: A major public health concern (2010). Available at: http://www.who.int/ipcs/features/lead.pdf (accessed July 17, 2017).

    Google Scholar 

  30. Cullen G. and Kolev A.D.S.: Monograph for UKPID: Lead (National Poisons Information Service, London, 1996).

    Google Scholar 

  31. Clever H.L. and Johnston F.J.: An evaluation of the solubility in water and aqueous electrolyte solution. J. Phys. Chem. Ref. Data 9, 751–784 (1980).

    CAS  Google Scholar 

  32. Wolrd Health Organisation: International program on chemical safety: Ten chemicals of major public health concern (2010). Available at: http://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/ (accessed July 17, 2017).

    Google Scholar 

  33. Sutherland B.R. and Sargent E.H.: Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

    CAS  Google Scholar 

  34. European Union: Directive 2011/65/EC of the European Parliament and of the councel on the restriction of the use of certain hazardous substances in electrical an electronic equipment (2011). Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF (accessed July 17, 2017).

    Google Scholar 

  35. European Union: Waste electrical and electronic equipment (WEEE) (2002). Available at: http://eur-lex.europa.eu/resource.html?uri=cellar:ac89e64f-a4a5-4c13-8d96-1fd1d6bcaa49.0004.02/DOC_1&format=PDF (accessed July 17, 2017).

    Google Scholar 

  36. International Lead Association: Lead recycling (2015). Available at: http://www.ila-lead.org/UserFiles/File/ILA9927FS_Recycling_V08.pdf (accessed July 31, 2017).

    Google Scholar 

  37. McKetta J.J. Jr.: Encyclopedia of Chemical Processing and Design (CRC Press, New York, 1997).

    Google Scholar 

  38. Gilfillan S.C.: Lead poisoning and the fall of Rome. J. Occup. Environ. Med. 7, 53–60 (1965).

    CAS  Google Scholar 

  39. Nriagu J.O.: Saturnine gout among Roman aristocrats: Did lead poisoning contribute to the fall of the Empire? N. Engl. J. Med. 308, 660–663 (1983).

    CAS  Google Scholar 

  40. Nriagu J.O.: Lead and Lead Poisoning in Antiquity (Wiley, New Jersey, 1983).

    Google Scholar 

  41. Nriagu J.O.: The rise and fall of leaded gasoline. Sci. Total Environ. 92, 13–28 (1990).

    CAS  Google Scholar 

  42. Nriagu J.O.: A history of global metal pollution. Science 272, 223 (1996).

    CAS  Google Scholar 

  43. Colophonius N.: Alexipharmaca. In Theriaca et Alexipharmaca, Schneider O. and Keil H., eds. (Sumptibus et typis B.G. Teubneri, Rome, 1856), vv. 595–600.

    Google Scholar 

  44. Waldron H.: Lead poisoning in the ancient world. Med. Hist. 17, 391 (1973).

    CAS  Google Scholar 

  45. Secundus G.P. and Hardouin J.: Historia Naturalis II (Impensis Societatis, Rome, 1741).

    Google Scholar 

  46. Kruft H-W.: A History of Architectural Theory from Vitruvius to the Present (Princeton Architectural Press, New York, 1994).

    Google Scholar 

  47. Rodgers R.H.: Frontinus: De Aquaeductu Urbis Romae (Cambridge University Press, New York, 2004).

    Google Scholar 

  48. Delile H., Blichert-Toft J., Goiran J-P., Keay S., and Albarède F.: Lead in ancient Rome’s city waters. Proc. Natl. Acad. Sci. U. S. A. 111, 6594–6599 (2014).

    CAS  Google Scholar 

  49. Eisinger J.: Eberhard Gockel and the colica Pictonum. Med. Hist. 26, 279–302 (1982).

    CAS  Google Scholar 

  50. Dioscorides P. and Sprengel K.: De Materia Medica I (Knobloch, Munchen, Germany, 1829).

    Google Scholar 

  51. Needleman H.L.: History of Lead Poisoning in the World (International Conference on Lead Poisoning Prevention and Treatment, Bangalore, 1999).

    Google Scholar 

  52. Finger S.: Doctor Franklin’s Medicine (University of Pennsylvania Press, Philedelphia, 2012).

    Google Scholar 

  53. Gimpel J.: The Medieval Machine: The Industrial Revolution of the Middle Ages (Penguin Books, New York, 1977).

    Google Scholar 

  54. Winder C.: The Developmental Neurotoxicity of Lead (MTP Press Ltd., Lancaster, 1984).

    Google Scholar 

  55. Rich V.: The International Lead Trade (Woodhead Publishing, Cambridge, 1994).

    Google Scholar 

  56. Rasmussen K.L., Skytte L., Jensen A.J., and Boldsen J.L.: Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci. Rep. 3, 358–370 (2015).

    Google Scholar 

  57. Blair J., Blair W.J., and Ramsay N.: English Medieval Industries: Craftsmen, Techniques, Products (The Hambledon Press, London, 1991).

    Google Scholar 

  58. Warren C.: Brush with Death: A Social History of Lead Poisoning (JHU Press, Baltimore, Maryland, 2001).

    Google Scholar 

  59. Lessler M.A.: Lead and lead poisoning from antiquity to modern times. Ohio J. Sci. 88, 78–84 (1988).

    CAS  Google Scholar 

  60. Metzler I.: Disability in Medieval Europe: Thinking about Physical Impairment in the High Middle Ages, c. 1100–c. 1400 (Routledge, New York, 2006).

    Google Scholar 

  61. Hoover H. and Hoover L.H.: De Re Metallica (Courier Corporation, New York, 1950).

    Google Scholar 

  62. Tronchin T.: De Colica Pictonum (Apud Fratres Cramer, Geneva, Switzerland, 1757).

    Google Scholar 

  63. Ramazzini B.: De Morbis Artificum Diatriba (Apud J. Corona, 1743).

    Google Scholar 

  64. Mai F.M.: Beethoven’s terminal illness and death. J. R. Coll. Physicians Edinb. 36, 258–263 (2006).

    CAS  Google Scholar 

  65. Barry P. and Mossman D.: Lead concentrations in human tissues. Occup. Environ. Med. 27, 339–351 (1970).

    CAS  Google Scholar 

  66. Needleman H.L.: Childhood lead poisoning: the promise and abandonment of primary prevention. Am. J. Public Health 88, 1871–1877 (1998).

    CAS  Google Scholar 

  67. Turner A.J.: On lead poisoning in childhood. Br. Med. J. 1, 895 (1909).

    CAS  Google Scholar 

  68. Gibson J.L.: A plea for painted railings and painted walls of rooms as the source of lead poisoning amongst Queensland children. Public Health Rep. 120, 301–304 (2005).

    Google Scholar 

  69. Needleman H.: Lead poisoning. Annu. Rev. Med. 55, 209–222 (2004).

    CAS  Google Scholar 

  70. Glickman L.T., Chaudry I.U., Costantino J., Clack F.B., Cypess R.H., and Winslow L.: Pica patterns, toxocariasis, and elevated blood lead in children. Am. J. Trop. Med. Hyg. 30, 77–80 (1981).

    CAS  Google Scholar 

  71. Sayre J.W., Charney E., Vostal J., and Pless I.B.: House and hand dust as a potential source of childhood lead exposure. Am. J. Dis. Child. 127, 167–170 (1974).

    CAS  Google Scholar 

  72. Markowitz G. and Rosner D.: “Cater to the children”: the role of the lead industry in a public health tragedy, 1900-1955. Am. J. Public Health 90, 36 (2000).

    CAS  Google Scholar 

  73. Nye J. Jr.: The Powers to Lead (Oxford University Press, Oxford, 2008).

    Google Scholar 

  74. Markowitz G. and Rosner D.: Corporate responsibility for toxins. Ann. Am. Acad. Polit. Soc. Sci. 584, 159–174 (2002).

    Google Scholar 

  75. Lin-Fu J.S.: Modern history of lead poisoning: A century of discovery and rediscovery. In Human Lead Exposure (CRC Press, London, 1992).

    Google Scholar 

  76. Center for Disease Control and Prevention: Preventing lead poisoning in young children: A statement by the centers for disease control and prevention (1991). Available at: https://wonder.cdc.gov/wonder/prevguid/p0000029/p0000029.asp (accessed July 31, 2017).

    Google Scholar 

  77. Staudinger K.C. and Roth V.S.: Occupational lead poisoning. Am. Fam. Physician 57, 719–726 (1998).

    CAS  Google Scholar 

  78. Gidlow D.: Lead toxicity. Occup. Med. 54, 76–81 (2004).

    CAS  Google Scholar 

  79. Landrigan P.J. and Todd A.C.: Lead poisoning. West. J. Med. 161, 153 (1994).

    CAS  Google Scholar 

  80. Tetra-ethyl lead used in ethyl gasoline. Gen. Sci. Q. 9, 118–122 (1925).

    Google Scholar 

  81. Loeb A.P.: Birth of the Kettering doctrine: fordism, sloanism and the discovery of tetraethyl lead. Bus. Econ. Hist., 72–87 (1995).

    Google Scholar 

  82. Edgar G.: Lead manufacture and use. Ind. Eng. Chem. 31, 1439–1446 (1939).

    CAS  Google Scholar 

  83. Hall S.: Lead pollution and poisoning. Environ. Sci. Technol. 6, 30–35 (1972).

    CAS  Google Scholar 

  84. M C.J.: Fuel. U.S. Patent No. 2405560 A, Gen Motors Corp., 1946.

    Google Scholar 

  85. Landrigan P.J.: The worldwide problem of lead in petrol. Bull. World Health Organ. 80, 768 (2002).

    Google Scholar 

  86. Kovarik W.: Ethyl-leaded gasoline: how a classic occupational disease became an international public health disaster. Int. J. Occup. Environ. Health 11, 384–397 (2005).

    Google Scholar 

  87. Kehoe R.A.: Tetra-ethyl lead poisoning: clinical analysis of a series of nonfatal cases. J. Am. Med. Assoc. 85, 108–110 (1925).

    CAS  Google Scholar 

  88. Kehoe R.A.: Standards for the prevention of occupational lead poisoning. Arch. Environ. Health 23, 245–248 (1971).

    CAS  Google Scholar 

  89. Kehoe R., Cholak J., Hubbard D., Bambach K., and McNary R.: Experimental studies on lead absorption and excretion and their relation to the diagnosis and treatment of lead poisoning. J. Ind. Hyg. Toxicol. 25, 71–79 (1943).

    CAS  Google Scholar 

  90. Needleman H.L.: Two views of lead toxicity. Environ. Res. 78, 79–85 (1998).

    CAS  Google Scholar 

  91. Kehoe R.A.: The metabolism of lead in man in health and disease. Lecture 1: The normal metabolism of lead. J. R. Inst. Public Health Hyg. 24, 81–97 (1961).

    CAS  Google Scholar 

  92. Park N-G., Grätzel M., Miyasaka T., Zhu K., and Emery K.: Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

    CAS  Google Scholar 

  93. Patterson C.C.: Contaminated and natural lead environments of man. Arch. Environ. Health 11, 344–360 (1965).

    CAS  Google Scholar 

  94. Patterson C.C.: Lead in the environment. Conn. Med. 35, 347–352 (1971).

    CAS  Google Scholar 

  95. Murozumi M., Chow T.J., and Patterson C.: Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim. Cosmochim. Acta 33, 1247–1294 (1969).

    CAS  Google Scholar 

  96. Lovei M.: Phasing Out Lead from Gasoline: Worldwide Experience and Policy Implications (World Bank Publications, Washington D.C., 1998).

    Google Scholar 

  97. Tilton G.: Clair Cameron Patterson, 1922–1995: A Biographical Memoir (National Academies Press, Washingtond D.C., 1998).

    Google Scholar 

  98. Tsai P.L. and Hatfield T.H.: Global benefits from the phaseout of leaded fuel. J. Environ. Health 74, 8–15 (2011).

    Google Scholar 

  99. Astrid Sigel H., Roland S., and Sigel K.O.: Lead: Its Effects on Environment and Health (CPI Books GmbH, Leck, 2017).

    Google Scholar 

  100. Center for Disease Control: Blood lead levels keep dropping: New guidelines recommended for those most vulnerable (1997). Available at: http://www.cdc.gov/media/pressrel/lead.htm (accessed July 17, 2017).

    Google Scholar 

  101. Leung A.O., Duzgoren-Aydin N.S., Cheung K., and Wong M.H.: Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 42, 2674–2680 (2008).

    CAS  Google Scholar 

  102. Belevi H. and Baccini P.: Long-term behavior of municipal solid waste landfills. Waste Manage. Res. 7, 43–56 (1989).

    CAS  Google Scholar 

  103. European Union: Directive 2002/95/EC of the European Parliament and of the councel on the restriction of the use of certain hazardous substances in electrical an electronic equipment (2003). Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF (accessed July 31, 2017).

    Google Scholar 

  104. Groß R., Bunke D., Gensch C-O., Zangl S., and Manhart A.: Study on Hazardous Substances in Electrical and Electronic Equipment, Not Regulated by the RoHS Directive (Öko-Institut for Applied Technology, 2008).

    Google Scholar 

  105. Shih D-Y., Dang B., Gruber P., Lu M., Kang S., Buchwalter S., Knickerbocker J., Perfecto E., Garant J., and Knickerbocker S.: C4NP for Pb-Free Solder Wafer Bumping and 3D Fine-Pitch Applications (Electronic Packaging Technology & High Density Packaging, 2008. ICEPT-HDP 2008. International Conference on, IEEE, 2008).

    Google Scholar 

  106. European Union: CE marking (2017). Available at: https://ec.europa.eu/growth/single-market/ce-marking_en (accessed July 31, 2017).

    Google Scholar 

  107. Congressional Research Service: U.S. manufacturing in international perspective (2017). Available at: https://fas.org/sgp/crs/misc/R42135.pdf (accessed July 17, 2017).

    Google Scholar 

  108. The State Council of The People’s Republic China: China remains world’s largest manufacturer and major network power (2017). Available at: http://english.gov.cn/state_council/ministries/2017/02/17/content_281475570357858.htm (accessed July 17, 2017).

    Google Scholar 

  109. Kuschnik B.: The European Union’s energy using products Directive 2005/32 taking transnational eco-product design regulation one step further. Temp. J. Sci. Tech. Environ. Law 27, 1 (2008).

    Google Scholar 

  110. Yang W.: Regulating electrical and electronic wastes in China. Rev. Eur. Comp. Int. Environ. Law 17, 335–344 (2008).

    CAS  Google Scholar 

  111. Zhu Q., Geng Y., and Sarkis J.: Shifting Chinese organizational responses to evolving greening pressures. Ecol. Econ. 121, 65–74 (2016).

    Google Scholar 

  112. Shin J-S.: Dynamic catch-up strategy, capability expansion and changing windows of opportunity in the memory industry. Res. Policy 46, 404–416 (2017).

    Google Scholar 

  113. Aizawa H., Yoshida H., and Sakai S-i.: Current results and future perspectives for Japanese recycling of home electrical appliances. Resour., Conserv. Recycl. 52, 1399–1410 (2008).

    Google Scholar 

  114. CalRecycle Californian Government: Electronic waste management: Electronic waste recycling act (ERWA) (2003). Available at: http://www.calrecycle.ca.gov/electronics/act2003/ (accessed July 17, 2017).

    Google Scholar 

  115. Californian Department of Toxic Substance Control: Restrictions on the use of certain hazardous substances in general purpose lights (2017). Available at: http://www.dtsc.ca.gov/HazardousWaste/UniversalWaste/RoHS_Lighting.cfm (accessed July 17, 2017).

    Google Scholar 

  116. IBM: Baseline environmental requirements for supplier deliverables to IBM (2017). Available at: http://www.ibm.com/ibm/environment/products/especs.shtml (accessed July 17, 2017).

    Google Scholar 

  117. IBM: Product content declaration for IBM suppliers (2016). Available at: http://www.ibm.com/ibm/environment/products/ecpquest.shtml (accessed July 17, 2017).

    Google Scholar 

  118. IBM: Engineering specification 46G3772: Baseline environmental requirements for supplier deliverables to IBM (2017). Available at: http://www.ibm.com/ibm/environment/products/46g3772_oct2016.pdf (accessed July 17, 2017).

    Google Scholar 

  119. Hewlett-Packard: Supplier social & environmental responsibility agreement (2015). Available at: http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=c04900239 (accessed July 17, 2017).

    Google Scholar 

  120. United States Environmental Protection Agency: Solders in electronics: A life-cycle assessment (2005). Available at: http://www.epa.gov/sites/production/files/2013-12/documents/lead_free_solder_lca_summary.pdf (accessed July 17, 2017).

    Google Scholar 

  121. Shangguan D.: Lead-Free Solder Interconnect Reliability (ASM International, Ohio, 2005).

    Google Scholar 

  122. Puttlitz K.J. and Stalter K.A.: Handbook of Lead-free Solder Technology for Microelectronic Assemblies (Marcel Decker, New York, 2004).

    Google Scholar 

  123. Galyon G.T.: Annotated tin whisker bibliography and anthology. IEEE Trans. Electron. Packag. Manuf. 28, 94–122 (2005).

    CAS  Google Scholar 

  124. Brusse J., Ewell G., and Siplon J.: Tin Whiskers: Attributes and Mitigation (CARTS EUROPE 2002: 16th Passive Components Symposium, 2002).

    Google Scholar 

  125. Vianco P.T. and Frear D.R.: Issues in the replacement of lead-bearing solders. JOM 45, 14–19 (1993).

    CAS  Google Scholar 

  126. McCormack M., Jin S., Chen H., and Machusak D.: New lead-free, Sn-Zn-In solder alloys. J. Electron. Mater. 23, 687–690 (1994).

    CAS  Google Scholar 

  127. Abtew M. and Selvaduray G.: Lead-free solders in microelectronics. Mater. Sci. Eng., R 27, 95–141 (2000).

    Google Scholar 

  128. The Guardian: Within a whisker of failure (2008). Available at: http://www.theguardian.com/technology/2008/apr/03/research.engineering (accessed July 17, 2017).

    Google Scholar 

  129. International Lead and Zinc Study Group: End uses of lead (2017). Available at: http://www.ilzsg.org/static/enduses.aspx?from=1 (accessed July 17, 2017).

    Google Scholar 

  130. European Union: Directive 2006/66/EC: Battery directive (2006). Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0066&from=en (accessed July 17, 2017).

    Google Scholar 

  131. Pavlov D.: Lead-acid Batteries: Science and Technology (Elsevier, Amsterdam, 2011).

    Google Scholar 

  132. Herat S.: Recycling of cathode ray tubes in electronic waste. Clean: Soil, Air, Water 36, 19–24 (2008).

    CAS  Google Scholar 

  133. International Association of Fire and Rescue Services: Center for Fire Statistics: World fire statistics (2017). Available at: http://www.ctif.org/sites/default/files/ctif_report22_world_fire_statistics_2017.pdf (accessed July 17, 2017).

    Google Scholar 

  134. Green M.A., Ho-Baillie A., and Snaith H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Google Scholar 

  135. European Union: RoHS 2 FAQ guidance document (2012). Available at: http://ec.europa.eu/environment/waste/rohs_eee/pdf/faq.pdf (accessed July 17, 2017).

    Google Scholar 

  136. Euractive: Solar industry divided over EU toxic substances law (2010). Available at: http://www.euractiv.com/section/public-affairs/news/solar-industry-divided-over-eu-toxic-substances-law/ (accessed July 17, 2017).

    Google Scholar 

  137. Saurat M. and Ritthoff M.: Photovoltaics and the RoHS Directive (Wuppertal Institute for Climate, Environment and Energy, 2010).

    Google Scholar 

  138. Leijtens T., Bush K., Cheacharoen R., Beal R., Bowring A., and McGehee M.D.: Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017).

    CAS  Google Scholar 

  139. Hailegnaw B., Kirmayer S., Edri E., Hodes G., and Cahen D.: Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    CAS  Google Scholar 

  140. Fthenakis V., Fuhrmann M., Heiser J., Lanzirotti A., Fitts J., and Wang W.: Emissions and encapsulation of cadmium in CdTe PV modules during fires. Prog. Photovoltaics 13, 713–723 (2005).

    CAS  Google Scholar 

  141. Burge P., Harries M., O’brien I., and Pepy J.: Respiratory disease in workers exposed to solder flux fumes containing colophony (pine resin). Clin. Exp. Allergy 8, 1–14 (1978).

    CAS  Google Scholar 

  142. Werner J.H., Zapf-Gottwick R., Koch M., and Fischer K.: Toxic Substances in Photovoltaic Modules (Proceedings of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, 2011).

    Google Scholar 

  143. ENDS Europe Daily: EU debates PV panels’ inclusion in WEEE law (2011). Available at: http://www.endseurope.com/article/26111/eu-debates-pv-panels-inclusion-in-weee-law (accessed July 17, 2017).

    Google Scholar 

  144. European Union: WEEE FAQ guidance document (2014). Available at: http://ec.europa.eu/environment/waste/weee/pdf/faq.pdf (accessed July 17, 2017).

    Google Scholar 

  145. PV CYCLE: Breakthrough in PV module recycling (2016). Available at: http://www.pvcycle.org/press/breakthrough-in-pv-module-recycling/ (accessed July 17, 2017).

    Google Scholar 

  146. Binek A., Petrus M.L., Huber N., Bristow H., Hu Y., Bein T., and Docampo P.: Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 8, 12881–12886 (2016).

    CAS  Google Scholar 

  147. Kadro J.M., Pellet N., Giordano F., Ulianov A., Müntener O., Maier J., Grätzel M., and Hagfeldt A.: Proof-of concept for facile perovskite solar cell recycling. Energy Environ. Sci. 9, 3172–3179 (2016).

    CAS  Google Scholar 

  148. Kadro J.M. and Hagfeldt A.: The end-of-life of perovskite PV. Joule 1, 29–46 (2017).

    Google Scholar 

Download references

Acknowledgments

A.B. is a Ph.D. fellow of the Research Foundation Flanders (FWO). B.C. is a postdoctoral fellow of FWO. We thank Dirk Weiss and Andreas Wade for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/mre.2017.17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babayigit, A., Boyen, HG. & Conings, B. Environment versus sustainable energy: The case of lead halide perovskite-based solar cells. MRS Energy & Sustainability 5, 15 (2018). https://doi.org/10.1557/mre.2017.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2017.17

Keywords

Navigation