Skip to main content
Log in

Fcγ Receptor Signaling in Phagocytes

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Fcγ receptors are among the best-studied phagocytic receptors. The key features of Fcγ receptor-mediated phagocytosis include phagocytic cup formation by extensive actin cytoskeletal rearrangements, particle engulfment, and the release of proinflammatory mediators such as cytokines and reactive oxygen species. These events are elegantly regulated by the simultaneous engagement of activating and inhibitory Fcγ receptors and by intracellular signaling molecules. Extensive studies in the past several years have defined the molecular mechanisms of the phagocytic process. The purpose of this review is to revisit some of the well-established signaling pathways as well as to summarize the new findings in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 1995;5:85–87.

    Article  PubMed  CAS  Google Scholar 

  2. Ravetch JV. Fc receptors. Curr Opin Immunol. 1997;9:121–125.

    Article  PubMed  CAS  Google Scholar 

  3. Ravetch JV, Clynes RA. Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol. 1998;16:421–432.

    Article  PubMed  CAS  Google Scholar 

  4. Unkeless JC, Jin J. Inhibitory receptors, ITIM sequences and phosphatases. Curr Opin Immunol. 1997;9:338–343.

    Article  PubMed  CAS  Google Scholar 

  5. Cambier JC. Antigen and Fc receptor signaling: the awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. 1995;155:3281–3285.

    PubMed  CAS  Google Scholar 

  6. Isakov N. Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol. 1997;61:6–16.

    Article  PubMed  CAS  Google Scholar 

  7. Ravetch JV. Fc receptors: rubor redux. Cell. 1994;78:553–560.

    Article  PubMed  CAS  Google Scholar 

  8. Nimmerjahn F, Ravetch JV. Fcγ receptors: old friends and new family members. Immunity. 2006;24:19–28.

    Article  CAS  PubMed  Google Scholar 

  9. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001; 19:275–290.

    Article  PubMed  CAS  Google Scholar 

  10. Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell. 1994;76: 519–529.

    Article  PubMed  CAS  Google Scholar 

  11. Sanchez-Mejorada G, Rosales C. Signal transduction by immunoglobulin Fc receptors. J Leukoc Biol. 1998;63:521–533.

    Article  PubMed  CAS  Google Scholar 

  12. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcγRIV a novel FcR with distinct IgG subclass specificity. Immunity. 2005;23:41–51.

    Article  PubMed  CAS  Google Scholar 

  13. Cooney DS, Phee H, Jacob A, Coggeshall KM. Signal transduction by human-restricted FcγRIIa involves three distinct cytoplasmic kinase families leading to phagocytosis. J Immunol. 2001;167: 844–854.

    Article  PubMed  CAS  Google Scholar 

  14. Ghazizadeh S, Bolen JB, Fleit HB. Physical and functional association of Src-related protein tyrosine kinases with Fc gamma RII in monocytic THP-1 cells. J Biol Chem. 1994;269:8878–8884.

    PubMed  CAS  Google Scholar 

  15. Tridandapani S, Lyden TW, Smith JL, Carter JE, Coggeshall KM, Anderson CL. The adapter protein LAT enhances Fcγ receptormediated signal transduction in myeloid cells. J Biol Chem. 2000; 275:20480–20487.

    Article  PubMed  CAS  Google Scholar 

  16. Allen LA, Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med. 1996;184:627–637.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg S, Chang P, Silverstein SC Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med. 1993;177:529–534.

    Article  PubMed  CAS  Google Scholar 

  18. Salcedo TW, Kurosaki T, Kanakaraj P, Ravetch JV, Perussia B. Physical and functional association of p56lck with Fc gamma RIIIA (CD16) in natural killer cells. J Exp Med. 1993;177: 1475–1480.

    Article  PubMed  CAS  Google Scholar 

  19. Duchemin AM, Anderson CL. Association of non-receptor protein tyrosine kinases with the Fc gamma RI/gamma-chain complex in monocytic cells. J Immunol. 1997;158:865–871.

    PubMed  CAS  Google Scholar 

  20. Crowley MT, Costello PS, Fitzer-Attas CJ, et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J Exp Med. 1997;186:1027–1039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Agarwal A, Salem P, Robbins KC. Involvement of p72syk, a protein-tyrosine kinase, in Fc gamma receptor signaling. J Biol Chem. 1993;268:15900–15905.

    PubMed  CAS  Google Scholar 

  22. Ghazizadeh S, Bolen JB, Fleit HB. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells. Biochem J.1995;305(pt 2):669–674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kiefer F, Brumell J, Al Alawi N, et al. The Syk protein tyrosine kinase is essential for Fcγ receptor signaling in macrophages and neutrophils. Mol Cell Biol. 1998;18:4209–4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Matsuda M, Park JG, Wang DC, Hunter S, Chien P, Schreiber AD. Abrogation of the Fc gamma receptor IIA-mediated phagocytic signal by stem-loop Syk antisense oligonucleotides. Mol Biol Cell. 1996;7:1095–1106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Indik ZK, Park JG, Hunter S, Schreiber AD. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood. 1995;86: 4389–4399.

    PubMed  CAS  Google Scholar 

  26. Araki N, Johnson MT, Swanson JA. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages.J Cell Biol. 1996;135:1249–1260.

    Article  PubMed  CAS  Google Scholar 

  27. Vanhaesebroeck B, Leevers SJ, Panayotou G,Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997;22:267–272.

    Article  PubMed  CAS  Google Scholar 

  28. Ninomiya N, Hazeki K, Fukui Y, et al. Involvement of phosphatidylinositol 3-kinase in Fc gamma receptor signaling. J Biol Chem. 1994;269:22732–22737.

    PubMed  CAS  Google Scholar 

  29. Kanakaraj P, Duckworth B, Azzoni L, Kamoun M, Cantley LC, Perussia B. Phosphatidylinositol-3 kinase activation induced upon Fc gamma RIIIA-ligand interaction. J Exp Med. 1994;179:551–558.

    Article  PubMed  CAS  Google Scholar 

  30. Vossebeld PJ, Homburg CH, Schweizer RC, et al. Tyrosine phosphorylation-dependent activation of phosphatidylinositide 3- kinase occurs upstream of Ca2+-signalling induced by Fcgamma receptor cross-linking in human neutrophils. Biochem J. 1997; 323(pt 1):87–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Leverrier Y, Okkenhaug K, Sawyer C, Bilancio A, Vanhaesebroeck B, Ridley AJ. Class I phosphoinositide 3-kinase p110β is required for apoptotic cell and Fcγ receptor-mediated phagocytosis by macrophages. J Biol Chem. 2003;278:38437–38442.

    Article  PubMed  CAS  Google Scholar 

  32. Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem. 1990;265:19704–19711.

    PubMed  CAS  Google Scholar 

  33. Carpenter CL, Auger KR, Chanudhuri M, et al. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem. 1993;268:9478–9483.

    PubMed  CAS  Google Scholar 

  34. Lowry MB, Duchemin AM, Coggeshall KM, Robinson JM, Anderson CL. Chimeric receptors composed of phosphoinositide 3-kinase domains and Fcγ receptor ligand-binding domains mediate phagocytosis in COS fibroblasts. J Biol Chem. 1998;273:24513–24520.

    Article  PubMed  CAS  Google Scholar 

  35. Cox D, Tseng CC, Bjekic G, Greenberg S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem. 1999;274:1240–1247.

    Article  CAS  PubMed  Google Scholar 

  36. Beemiller P, Hoppe AD, Swanson JA. A phosphatidylinositol-3- kinase-dependent signal transition regulates ARF1 and ARF6 during Fcγ receptor-mediated phagocytosis. PLoS Biol. 2006;4:e162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–358.

    Article  CAS  PubMed  Google Scholar 

  38. Allen LA, Allgood JA, Han X, Wittine LM. Phosphoinositide3- kinase regulates actin polymerization during delayed phagocytosis of Helicobacter pylori. J Leukoc Biol. 2005;78:220–230.

    Article  PubMed  CAS  Google Scholar 

  39. Ganesan LP, Wei G, Pengal RA, et al. The serine/threonine kinase Akt promotes Fcγ receptor-mediated phagocytosis in murine macrophages through the activation of p70S6 kinase. J Biol Chem. 2004;279:54416–54425.

    Article  CAS  PubMed  Google Scholar 

  40. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell. 2004;116:167–179.

    Article  PubMed  CAS  Google Scholar 

  41. Ueyama T, Eto M, Kami K, et al. Isoform-specific membrane targeting mechanism of Rac during FcγR-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol. 2005;175:2381–2390.

    Article  PubMed  CAS  Google Scholar 

  42. Nishihara H, Maeda M, Oda A, et al. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood. 2002;100: 3968–3974.

    Article  PubMed  CAS  Google Scholar 

  43. ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL. Targeting and activation of Rac1 are mediated by the exchange factor β-Pix. J Cell Biol. 2006;172:759–769.

    Article  CAS  Google Scholar 

  44. Liu BP, Burridge K. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not β1 integrins. Mol Cell Biol. 2000;20:7160–7169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol. 1998;8:1289–1299.

    Article  PubMed  CAS  Google Scholar 

  46. Hall AB, Gakidis MA, Glogauer M et al. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcγR- and complement-mediated phagocytosis. Immunity. 2006;24: 305–316.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Guo J, Dzhagalov I, He YW. An essential function for the calcium-promoted Ras inactivator in Fcγ receptor-mediated phagocytosis. Nat Immunol. 2005;6:911–919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G. The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem. 1996;271:83–88.

    Article  CAS  PubMed  Google Scholar 

  49. Kim C, Dinauer MC. Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol. 2001;166: 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  50. Yamauchi A, Kim C, Li S, et al. Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles. J Immunol. 2004;173:5971–5979.

    Article  PubMed  CAS  Google Scholar 

  51. Hoppe AD, Swanson JA. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell. 2004;15: 3509–3519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem. 1997;272:15045–15048.

    Article  PubMed  CAS  Google Scholar 

  53. Kiener PA, Rankin BM, Burkhardt AL, et al. Cross-linking of Fc gamma receptor I (Fc gamma RI) and receptor II (Fc gamma RII) on monocytic cells activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 Syk protein tyrosine kinase. J Biol Chem. 1993;268:24442–24448.

    PubMed  CAS  Google Scholar 

  54. Upshaw JL, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ. The isoforms of phospholipase C-γ are differentially used by distinct human NK activating receptors. J Immunol. 2005;175:213–218.

    Article  PubMed  CAS  Google Scholar 

  55. Dusi S, Donini M, Della Bianca V, Rossi F. Tyrosine phosphorylation of phospholipase C-γ2 is involved in the activation of phosphoinositide hydrolysis by Fc receptors in human neutrophils. Biochem Biophys Res Commun. 1994;201:1100–1108.

    Article  PubMed  CAS  Google Scholar 

  56. Botelho RJ, Teruel M, Dierckman R, et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol. 2000;151:1353–1368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Virgilio DiF, Meyer BC, Greenberg S, Silverstein SC. Fc receptormediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J Cell Biol. 1988;106:657–666.

    Article  PubMed  Google Scholar 

  58. McNeil PL, Swanson JA, Wright SD, Silverstein SC, Taylor DL. Fc-receptor-mediated phagocytosis occurs in macrophages without an increase in average [Ca++]i. J Cell Biol. 1986;102:1586–1592.

    Article  PubMed  CAS  Google Scholar 

  59. Mandeville JT, Maxfield FR. Calcium and signal transduction in granulocytes. Curr Opin Hematol. 1996;3:63–70.

    Article  PubMed  CAS  Google Scholar 

  60. Larsen EC, DiGennaro JA, Saito N, et al. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol. 2000;165:2809–2817.

    Article  PubMed  CAS  Google Scholar 

  61. Zheleznyak A, Brown EJ. Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation: evidence for protein kinase C translocation to phagosomes. J Biol Chem. 1992;267:12042–12048.

    PubMed  CAS  Google Scholar 

  62. Larsen EC, Ueyama T, Brannock PM, et al. A role for PKC-ε in FcγR-mediated phagocytosis by RAW 264.7 cells. J Cell Biol. 2002; 159:939–944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Muid RE, Dale MM, Davis PD, et al. A novel conformationally restricted protein kinase C inhibitor, Ro 31-8425, inhibits human neutrophil superoxide generation by soluble, particulate and post- receptor stimuli. FEBS Lett. 1991;293:169–172.

    Article  PubMed  CAS  Google Scholar 

  64. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med. 1999;189:179–185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Park JB. Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp Mol Med. 2003;35:325–335.

    Article  PubMed  CAS  Google Scholar 

  66. Hunter S, Indik ZK, Kim MK, Cauley MD, Park JG, Schreiber AD. Inhibition of Fcγ receptor-mediated phagocytosis by a nonphago- cytic Fcγ receptor. Blood. 1998;91:1762–1768.

    PubMed  CAS  Google Scholar 

  67. Joshi T, Ganesan LP, Cao X, Tridandapani S. Molecular analysis of expression and function of hFcγRIIbl and b2 isoforms in myeloid cells. Mol Immunol. 2006;43:839–850.

    Article  PubMed  CAS  Google Scholar 

  68. Liu Y, Masuda E, Blank MC, et al. Cytokine-mediated regulation of activating and inhibitory Fcγ receptors in human monocytes. J Leukoc Biol. 2005;77:767–776.

    Article  PubMed  CAS  Google Scholar 

  69. Pricop L, Redecha P, Teillaud JL, et al. Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–537.

    Article  PubMed  CAS  Google Scholar 

  70. Tridandapani S, Siefker K, Teillaud JL, Carter JE, Wewers MD, Anderson CL. Regulated expression and inhibitory function of FcγRIIb in human monocytic cells. J Biol Chem. 2002;277: 5082–5089.

    Article  PubMed  CAS  Google Scholar 

  71. Chacko GW, Tridandapani S, Damen JE, Liu L, Krystal G, Coggeshall KM. Negative signaling in B lymphocytes induces tyrosine phosphorylation of the 145-kDa inositol polyphosphate 5- phosphatase, SHIP. J Immunol. 1996;157:2234–2238.

    PubMed  CAS  Google Scholar 

  72. Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature. 1996;383:263–266.

    Article  PubMed  CAS  Google Scholar 

  73. Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell. 1997;90:293–301.

    Article  PubMed  CAS  Google Scholar 

  74. Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins. Genes Dev. 2000;14: 505–520.

    PubMed  CAS  Google Scholar 

  75. Aman MJ, Lamkin TD, Okada H, Kurosaki T, Ravichandran KS. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J Biol Chem. 1998;273:33922–33928.

    Article  PubMed  CAS  Google Scholar 

  76. Scharenberg AM, El Hillal O, Fruman DA, et al. Phosphatidylinositol- 3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998;17:1961–1972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tridandapani S, Kelley T, Pradhan M, Cooney D, Justement LB, Coggeshall KM. Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fc gamma immunorecep- tor tyrosine-based inhibition motif peptide motif. Mol Cell Biol. 1997; 17:4305–4311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Tridandapani S, Pradhan M, LaDine JR, Garber S, Anderson CL, Coggeshall KM. Protein interactions of Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP): association with Shc displaces SHIP from FcγRIIb in B cells. J Immunol. 1999;162: 1408–1414.

    PubMed  CAS  Google Scholar 

  79. Cox D, Dale BM,Kashiwada M, Helgason CD, Greenberg S. A regulatory role for Src homology 2 domain-containing inositol 5′- phosphatase (SHIP) in phagocytosis mediated by Fcγ receptors and complement receptor 3 (αMβ2; CD11b/CD18). J Exp Med. 2001;193:61–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcβ receptor-mediated phagocytosis through immunoreceptor tyrosine- based activation motif-bearing phagocytic receptors. Blood. 2002; 100:3374–3382.

    Article  PubMed  CAS  Google Scholar 

  81. Tridandapani S, Wang Y, Marsh CB, Anderson CL. Src homology 2 domain-containing inositol polyphosphate phosphatase regulates NF-KB-mediated gene transcription by phagocytic FcγRs in human myeloid cells. J Immunol. 2002;169:4370–4378.

    Article  PubMed  CAS  Google Scholar 

  82. Ganesan LP, Joshi T, Fang H, et al. FcγR-induced production of superoxide and inflammatory cytokines is differentially regulated by SHIP through its influence on PI3K and/or Ras/Erk pathways. Blood. 2006;108:718–725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pengal RA, Ganesan LP, Fang H, Marsh CB, Anderson CL, Tridandapani S. SHIP-2 inositol phosphatase is inducibly expressed in human monocytes and serves to regulate Fcγ receptor-mediated signaling. J Biol Chem. 2003;278:22657–22663.

    Article  PubMed  CAS  Google Scholar 

  84. Ai J, Maturu A, Johnson W, Wang Y, Marsh CB, Tridandapani S.The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood. 2006;107:813–820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol. 2003;13:478–483.

    Article  PubMed  CAS  Google Scholar 

  86. Kim JS, Peng X, De PK, Geahlen RL, Durden DL. PTEN controls immunoreceptor (immunoreceptor tyrosine-based activation motif) signaling and the activation of Rac. Blood. 2002;99: 694–697.

    Article  PubMed  CAS  Google Scholar 

  87. Cao X, Wei G, Fang H, et al. The inositol 3-phosphatase PTEN negatively regulates Fcγ receptor signaling, but supports Toll-like receptor 4 signaling in murine peritoneal macrophages. J Immunol. 2004;172:4851–4857.

    Article  PubMed  CAS  Google Scholar 

  88. Kant AM, De P, Peng X, et al. SHP-1 regulates Fcγ receptor-mediated phagocytosis and the activation of RAC. Blood. 2002;100: 1852–1859.

    PubMed  CAS  Google Scholar 

  89. Ganesan LP, Fang H, Marsh CB, Tridandapani S. The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of FcγRIIa to modulate signaling events in myeloid cells. J Biol Chem. 2003;278: 35710–35717.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheela Tridandapani.

About this article

Cite this article

Joshi, T., Butchar, J.P. & Tridandapani, S. Fcγ Receptor Signaling in Phagocytes. Int J Hematol 84, 210–216 (2006). https://doi.org/10.1532/IJH97.06140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06140

Key words

Navigation