Skip to main content
Log in

Vascular Endothelial Growth Factor and Other Signaling Pathways in Developmental and Pathologic Angiogenesis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The field of angiogenesis received a huge boost in 2003 with the announcement of positive results in a phase III clinical trial using a vascular endothelial growth factor (VEGF)-blocking antibody for the treatment of cancer. Although the VEGF pathway has emerged as a central signaling pathway in normal and pathologic angiogenesis, several other pathways are also now recognized as playing essential roles. This review focuses on 2 specific areas. First, we summarize some of the work on newly discovered angiogenic signaling pathways by primarily describing the molecular biology of the pathways and the evidence for their involvement in vascular development. Second, we describe progress in therapeutic antiangiogenesis in cancer, particularly with agents that block the VEGF pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180.

    Article  CAS  PubMed  Google Scholar 

  2. Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8:1897–1909.

    Article  CAS  PubMed  Google Scholar 

  3. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376:70–74.

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, McKinnon ML, Leong LM, Rusholme SA, Wang S, Akhurst RJ. Genetic modifiers interact with maternal determinants in vascular development of Tgfb1 -/- mice. Hum Mol Genet. 2003;12:1579–1589.

    Article  CAS  PubMed  Google Scholar 

  5. Larsson J, Goumans MJ, Sjostrand LJ, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor- deficient mice. EMBO J. 2001;20:1663–1673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 mod- ulates transforming growth factor-β 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA. 2000;97:2626–2631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet. 2000;26: 328–331.

    Article  CAS  PubMed  Google Scholar 

  8. Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284:1534–1537.

    Article  CAS  PubMed  Google Scholar 

  9. Arthur HM, Ure J, Smith AJ, et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217:42–53.

    Article  CAS  PubMed  Google Scholar 

  10. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93:741–753.

    Article  CAS  PubMed  Google Scholar 

  11. Gerety SS,Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4: 403–414.

    Article  CAS  PubMed  Google Scholar 

  12. Serini G, Valdembri D, Zanivan S, et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature. 2003;424:391–397.

    Article  CAS  PubMed  Google Scholar 

  13. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neu- ropilin-1 in embryonic vessel formation. Development. 1999;126: 4895–4902.

    CAS  PubMed  Google Scholar 

  14. Kitsukawa T, Shimizu M, Sanbo M, et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997;19:995–1005.

    Article  CAS  PubMed  Google Scholar 

  15. Gu C, Rodriguez ER, Reimert DV, et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell. 2003;5:45–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gessler M, Knobeloch KP, Helisch A, et al. Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 -/- mice. Curr Biol. 2002;12:1601–1604.

    Article  CAS  PubMed  Google Scholar 

  17. Donovan J, Kordylewska A, Jan YN, Utset MF. Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol. 2002;12:1605–1610.

    Article  CAS  PubMed  Google Scholar 

  18. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999; 284:770–776.

    Article  CAS  PubMed  Google Scholar 

  19. Parks AL, Klueg KM, Stout JR, Muskavitch MA. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development. 2000;127:1373–1385.

    CAS  PubMed  Google Scholar 

  20. Kramer H. RIPping Notch apart: a new role for endocytosis in signal transduction? Sci STKE. 2000;2000:PE1.

    Article  CAS  PubMed  Google Scholar 

  21. Schweisguth F. Notch signaling activity. Curr Biol. 2004;14:R129-R138.

    Article  CAS  PubMed  Google Scholar 

  22. Okajima T, Irvine KD. Regulation of Notch signaling by O-linked fucose. Cell.2002;111:893–904.

    Article  CAS  PubMed  Google Scholar 

  23. Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA. 2003;100:5234–5239.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol. 2002;12: 593–598.

    Article  CAS  PubMed  Google Scholar 

  25. Bruckner K, Perez L, Clausen H, Cohen S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature. 2000;406:411–415.

    Article  CAS  PubMed  Google Scholar 

  26. Moloney DJ, Panin VM, Johnston SH, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406:369–375.

    Article  CAS  PubMed  Google Scholar 

  27. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131:965–973.

    Article  CAS  PubMed  Google Scholar 

  28. Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development. Arterioscler Thromb Vasc Biol. 2003;23:543–553.

    Article  CAS  PubMed  Google Scholar 

  29. Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays. 2004;26: 225–234.

    Article  CAS  PubMed  Google Scholar 

  30. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific Notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation. 2001;69: 135–144.

    Article  CAS  PubMed  Google Scholar 

  31. Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet. 1999;8:723–730.

    Article  CAS  PubMed  Google Scholar 

  32. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129:1075–1082.

    CAS  PubMed  Google Scholar 

  33. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev. 1994;8:707–719.

    Article  CAS  PubMed  Google Scholar 

  34. Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14:1343–1352.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–710.

    Article  CAS  PubMed  Google Scholar 

  36. Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003;23:14–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lawson ND, Scheer N, Pham VN, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128:3675–3683.

    CAS  PubMed  Google Scholar 

  38. Zhong TP, Childs S, Leu JP, Fishman MC. Gridlock signalling pathway fashions the first embryonic artery. Nature. 2001;414:216–220.

    Article  CAS  PubMed  Google Scholar 

  39. Thurston G, Yancopoulos GD. Gridlock in the blood. Nature. 2001; 414:163–164.

    Article  CAS  PubMed  Google Scholar 

  40. Weinstein BM, Lawson ND. Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol. 2002;67:155–162.

    Article  CAS  PubMed  Google Scholar 

  41. Lawson ND, Vogel AM, Weinstein BM. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 2002;3: 127–136.

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Xiao Y, Ding BB, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4:19–29.

    Article  PubMed  Google Scholar 

  43. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics. 2002;79:547–552.

    Article  CAS  PubMed  Google Scholar 

  44. Park KW, Morrison CM, Sorensen LK, et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol. 2003;261:251–267.

    Article  CAS  PubMed  Google Scholar 

  45. Liu ZJ, Herlyn M. Slit-Robo: neuronal guides signal in tumor angiogenesis. Cancer Cell. 2003;4:1–2.

    Article  CAS  PubMed  Google Scholar 

  46. Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene. 2003;22:4611–4616.

    Article  CAS  PubMed  Google Scholar 

  47. Plump AS, Erskine L, Sabatier C, et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron. 2002;33:219–232.

    Article  CAS  PubMed  Google Scholar 

  48. Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc NatlAcad Sci USA. 2003; 100:5217–5222.

    Article  CAS  Google Scholar 

  49. Liu J, Zhang L, Wang D, et al. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev. 2003;120:1059–1070.

    Article  CAS  PubMed  Google Scholar 

  50. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–1186.

    Article  CAS  PubMed  Google Scholar 

  51. Tannock IF. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer. 1968;22:258–273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tannock IF, Hayashi S. The proliferation of capillary endothelial cells. Cancer Res. 1972;32:77–82.

    CAS  PubMed  Google Scholar 

  53. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer. 1982;45:136–139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumours. Br J Cancer. 1982;46:711–720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ferrara N, Chen H, Davis-Smyth T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–340.

    Article  CAS  PubMed  Google Scholar 

  56. Fraser HM, Dickson SE, Lunn SF, et al. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology. 2000;141:995–1000.

    Article  CAS  PubMed  Google Scholar 

  57. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999; 5:623–628.

    Article  CAS  PubMed  Google Scholar 

  58. Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol. 1996;114:66–71.

    Article  CAS  PubMed  Google Scholar 

  59. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA. 1995;92:10457–10461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW. The vascular endothelial growth factor family of polypeptides. J Cell Biochem. 1991;47:211–218.

    Article  CAS  PubMed  Google Scholar 

  61. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 1989;84:1470–1478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29(suppl 16):10–14.

    Article  CAS  PubMed  Google Scholar 

  63. Bates DO, Cui TG, Doughty JM, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002;62:4123–4131.

    CAS  PubMed  Google Scholar 

  64. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439–442.

    Article  CAS  PubMed  Google Scholar 

  65. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–439.

    Article  CAS  PubMed  Google Scholar 

  66. Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development. 1999;126:1149–1159.

    CAS  PubMed  Google Scholar 

  67. Quinn TP, Peters KG, de Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA. 1993;90:7533–7537.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Shen H, Clauss M, Ryan J, et al. Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood. 1993;81:2767–2773.

    CAS  PubMed  Google Scholar 

  69. Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation. J Biol Chem. 1995;270: 6729–6733.

    Article  CAS  PubMed  Google Scholar 

  70. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835–846.

    Article  CAS  PubMed  Google Scholar 

  71. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989–991.

    Article  PubMed  Google Scholar 

  72. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3(-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. J Biol Chem. 1998;273: 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  73. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–844.

    Article  CAS  PubMed  Google Scholar 

  74. Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 1998;153:1249–1256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Mordenti J, Thomsen K, Licko V, Chen H, Meng YG, Ferrara N. Efficacy and concentration-response of murine anti-VEGF mono- clonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol. 1999;27:14–21.

    Article  CAS  PubMed  Google Scholar 

  76. Ryan AM, Eppler DB, Hagler KE, et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol Pathol. 1999;27:78–86.

    Article  CAS  PubMed  Google Scholar 

  77. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99:11393–11398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Huang J, Frischer JS, Serur A, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc NatlAcad Sci USA. 2003;100:7785–7790.

    Article  CAS  Google Scholar 

  79. Byrne AT, Ross L, Holash J, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res. 2003;9:5721–5728.

    CAS  PubMed  Google Scholar 

  80. Witte L, Hicklin DJ, Zhu Z, et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. 1998;17:155–161.

    Article  CAS  PubMed  Google Scholar 

  81. Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs. 1999;17:195–212.

    Article  CAS  PubMed  Google Scholar 

  82. Prewett M, Huber J, Li Y, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 1999;59:5209–5218.

    CAS  PubMed  Google Scholar 

  83. Lu D, Shen J, Vil MD, et al. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem. 2003;278:43496–43507.

    Article  CAS  PubMed  Google Scholar 

  84. Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology. 2003;110:979–986.

    Article  Google Scholar 

  85. Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina. 2002;22: 143–152.

    Article  Google Scholar 

  86. Ishida S, Usui T, Yamashiro K, et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med. 2003;198: 483–489.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Wood JM, Bold G, Buchdunger E, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 2000;60:2178–2189.

    CAS  PubMed  Google Scholar 

  88. Schoenberger J, Grimm D, Kossmehl P, Infanger M, Kurth E, Eilles C. Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study. Endocrinology. 2004;145:1031–1038.

    Article  CAS  PubMed  Google Scholar 

  89. Solorzano CC, Baker CH, Bruns CJ, et al. Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radio- pharm.2001;16:359–370.

    CAS  Google Scholar 

  90. Drevs J, Hofmann I, Hugenschmidt H, et al. Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res. 2000;60:4819–4824.

    CAS  PubMed  Google Scholar 

  91. Jain RK, Safabakhsh N, Sckell A, et al. Endothelial cell death, angiogenesis, and micro vascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA. 1998;95:10820–10825.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Hansen-Algenstaedt N, Stoll BR, Padera TP, et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res. 2000;60:4556–4560.

    CAS  PubMed  Google Scholar 

  93. Warren BA. In vivo and electron microscopic study of vessels in two transplantable tumours in the hamster. Bibl Anat. 1967;9:412–417.

    CAS  PubMed  Google Scholar 

  94. Warren BA. The ultrastructure of the microcirculation at the advancing edge of Walker 256 carcinoma. Microvasc Res. 1970;2:443–453.

    Article  CAS  PubMed  Google Scholar 

  95. Papadimitrou JM, Woods AE. Structural and functional characteristics of the microcirculation in neoplasms. J Pathol. 1975;116:65–72.

    Article  CAS  PubMed  Google Scholar 

  96. Steinberg F, Konerding MA, Streffer G. The vascular architecture of human xenotransplanted tumors: histological, morphometrical, and ultrastructural studies. J Cancer Res Clin Oncol. 1990;116:517–524.

    Article  CAS  PubMed  Google Scholar 

  97. Konerding MA, Steinberg F. Scanning and transmission electron microscopic studies on the vascular system of xenotransplanted human tumors on nude mice. Prog Clin Biol Res. 1989;295:475–480.

    CAS  PubMed  Google Scholar 

  98. Vaupel P. Hypoxia in neoplastic tissue. Microvasc Res. 1977;13: 399–408.

    Article  CAS  PubMed  Google Scholar 

  99. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998; 58:1408–1416.

    CAS  PubMed  Google Scholar 

  100. Chaplin DJ, Hill SA, Bell KM, Tozer GM. Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol. 1998;8:151–163.

    Article  CAS  PubMed  Google Scholar 

  101. Feldmann HJ, Molls M, Vaupel P. Blood flow and oxygenation status of human tumors: clinical investigations. Strahlenther Onkol. 1999;175:1–9.

    Article  CAS  PubMed  Google Scholar 

  102. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med. 2003;54:17–28.

    Article  CAS  PubMed  Google Scholar 

  103. Vaupel P, Briest S, Hockel M. Hypoxia in breast cancer: pathogen- esis, characterization and biological/therapeutic implications. Wien Med Wochenschr. 2002;152:334–342.

    Article  CAS  PubMed  Google Scholar 

  104. Wiig H, Tveit E, Hultborn R, Reed RK, Weiss L. Interstitial fluid pressure in DMBA-induced rat mammary tumours. Scand J Clin Lab Invest. 1982;42:159–164.

    Article  CAS  PubMed  Google Scholar 

  105. Hori K, Suzuki M, Abe I, Saito S. Increased tumor tissue pressure in association with the growth of rat tumors. Jpn J Cancer Res. 1986;77:65–73.

    CAS  PubMed  Google Scholar 

  106. Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991;51:6691–6694.

    CAS  PubMed  Google Scholar 

  107. Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. 1992;52:6371–6374.

    CAS  PubMed  Google Scholar 

  108. Gutmann R, Leunig M, Feyh J, et al. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 1992;52:1993–1995.

    CAS  PubMed  Google Scholar 

  109. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156:1363–1380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–3756.

    CAS  PubMed  Google Scholar 

  111. Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6:559–593.

    Article  CAS  PubMed  Google Scholar 

  112. Thurston G, McLean JW, Rizen M, et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest. 1998;101:1401–1413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Campbell RB, Fukumura D, Brown EB, et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 2002;62: 6831–6836.

    CAS  PubMed  Google Scholar 

  114. Kunstfeld R, Wickenhauser G, Michaelis U, et al. Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J Invest Dermatol. 2003;120:476–482.

    Article  CAS  PubMed  Google Scholar 

  115. Krasnici S, Werner A, Eichhorn ME, et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer. 2003;105:561–567.

    Article  CAS  PubMed  Google Scholar 

  116. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz G. Analysis of mural cell recruitment to tumor vessels. Circulation. 2002;105:112–117.

    Article  CAS  PubMed  Google Scholar 

  117. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160:985–1000.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163:1801–1815.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003; 9:685–693.

    Article  CAS  PubMed  Google Scholar 

  120. Lee CG, Heijn M, di Tomaso E, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 2000;60:5565–5570.

    CAS  PubMed  Google Scholar 

  121. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiol- ogy using intravital microscopy. Nat Rev Cancer. 2002;2:266–276.

    Article  CAS  PubMed  Google Scholar 

  123. Fernando NH, Hurwitz HI. Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol. 2003;30(suppl 6):39–50.

    Article  CAS  PubMed  Google Scholar 

  124. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–739.

    Article  CAS  PubMed  Google Scholar 

  125. Abdollahi A, Hahnfeldt P, Maercker C, et al. Endostatin’s antian-giogenic signaling network. Mol Cell. 2004;13:649–663.

    Article  CAS  PubMed  Google Scholar 

  126. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003;111:1287–1295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–1886.

    CAS  PubMed  Google Scholar 

  128. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105: R15-R24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105:1045–1047.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Kerbel RS, Viloria-Petit A, Klement G, Rak J. ‘Accidental’ antiangiogenic drugs: anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer. 2000;36:1248–1257.

    Article  CAS  PubMed  Google Scholar 

  131. Kerbel RS, Klement G, Pritchard KI, Kamen B. Continuous low- dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol. 2002;13:12–15.

    Article  CAS  PubMed  Google Scholar 

  132. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002;62:6938–6943.

    CAS  PubMed  Google Scholar 

  133. Man S, Bocci G, Francia G, et al. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. 2002;62:2731–2735.

    CAS  PubMed  Google Scholar 

  134. Kaur H, Budd GT. Metronomic therapy for breast cancer. Curr Oncol Rep. 2004;6:49–52.

    Article  PubMed  Google Scholar 

  135. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Wein- master G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001;108:161–164.

    Article  CAS  PubMed  Google Scholar 

  136. Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR,Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development. 1999;126: 3415–3424.

    CAS  PubMed  Google Scholar 

  137. McCright B, Gao X, Shen L, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128:491–502.

    CAS  PubMed  Google Scholar 

  138. Jiang R, Lan Y, Chapman HD, et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev. 1998; 12:1046–1057.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Hrabe de Angelis M, McIntyre J 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature. 1997;386:717–721.

    Article  Google Scholar 

  140. Przemeck GK, Heinzmann U, Beckers J, Hrabe de Angelis M. Node and midline defects are associated with left-right development in Delta1 mutant embryos. Development. 2003;130:3–13.

    Article  CAS  PubMed  Google Scholar 

  141. De Bellard ME, Ching W, Gossler A, Bronner-Fraser M. Disruption of segmental neural crest migration and ephrin expression in Delta-1 null mice. Dev Biol. 2002;249:121–130.

    Article  CAS  PubMed  Google Scholar 

  142. Kusumi K, Dunwoodie SL, Krumlauf R. Dynamic expression patterns o f the pudgy/spondylocostal dysostosis gene Dll3 in the developing nervous system. Mech Dev. 2001;100:141–144.

    Article  CAS  PubMed  Google Scholar 

  143. Bulman MP, Kusumi K, Frayling TM, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet. 2000;24:438–441.

    Article  CAS  PubMed  Google Scholar 

  144. Xian J, Clark KJ, Fordham R, Pannell R, Rabbitts TH, Rabbitts PH. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene. Proc Natl Acad Sci U S A. 2001;98:15062–15066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129: 4797–4806.

    CAS  PubMed  Google Scholar 

  146. Chen H, Bagri A, Zupicich JA, et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron. 2000;25:43–56.

    Article  PubMed  Google Scholar 

  147. Giger RJ, Cloutier JF, Sahay A, et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted sema-phorins. Neuron. 2000;25:29–41.

    Article  CAS  PubMed  Google Scholar 

  148. Takashima S, Kitakaze M, Asakura M, et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA. 2002;99:3657–3662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Krebs LT, Xue Y, Norton CR, et al. Characterization of Notch3- deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis. 2003;37(3): 139–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gavin Thurston or Nicholas W. Gale.

About this article

Cite this article

Thurston, G., Gale, N.W. Vascular Endothelial Growth Factor and Other Signaling Pathways in Developmental and Pathologic Angiogenesis. Int J Hematol 80, 7–20 (2004). https://doi.org/10.1532/IJH97.04065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04065

Key words

Navigation