Skip to main content
Log in

Synthesis of 5-hydroxymethylfurfural from glucose in a biphasic medium with AlCl3 and boric acid as the catalyst

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In combination with non-corrosive and low-toxic boric acid, AlCl3 · 6H2O was found to be effective for the synthesis of 5-hydroxymethylfurfural (5-HMF) from glucose. In this work, a 5-HMF yield of ≈ 60 % was obtained at 170°C for 40 min in a H2O/THF biphasic solvent mixture. An addition of NaCl not only improved the partition coefficients but also inhibited by-product formation. THF was identified as an ideal extraction solvent in biphasic systems containing C4 solvents. However, low concentration of ZnCl2, CoCl2 · 6H2O, MnCl2 · 4H2O, NiCl2 · 6H2O, FeCl3 · 6H2O were not suitable for the catalyst system, while ZrOCl2 · 8H2O, InCl3 · 4H2O showed high activity for the reaction. Boric acid increased the amount of Lewis acid sites in the reactive phase and enhanced the isomerization of glucose to fructose. A mechanism of the AlCl3 · 6H2O and boric acid catalyzed glucose dehydration reaction was proposed to proceed through the isomerization of glucose to fructose followed by the transformation of fructose to 5-HMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amarasekara, A. S., Williams, L. D., & Ebede, C. C. (2008). Mechanism of the dehydration of D-fructose to 5-hydroxy-methylfurfural in dimethyl sulfoxide at 150°C: An NMR study. Carbohydrate Research, 343, 3021–3024. DOI: 10.1016 /j.carres.2008.09.008.

    Article  CAS  Google Scholar 

  • Antal, M. J., Mok, W. S. L., & Richards, G. N. (1990). Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Research, 199, 91–109. DOI: 10.1016/0008-6215(90)84096-d.

    Article  CAS  Google Scholar 

  • Binder, J. B., & Raines, R. T. (2009). Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Journal of the American Chemical Society, 131, 1979–1985. DOI: 10.1021/ja808537j.

    Article  CAS  Google Scholar 

  • Boisen, A., Christensen, T. B., Fu, W., Gorbanev, Y. Y., Hansen, T. S., Jensen, J. S., Klitgaard, S. K., Pedersen, S., Riisager, A., Ståhlberg, T., & Woodley, J. M. (2009). Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chemical Engineering Research and Design, 87, 1318–1327. DOI: 10.1016/j.cherd.2009.06.010.

    Article  CAS  Google Scholar 

  • Cai, C. M., Nagane, N., Kumar, R., & Wyman, C. E. (2014). Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry, 16, 3819–3829. DOI: 10.1039/c4gc00747f.

    Article  CAS  Google Scholar 

  • Cao, X. Q., Teong, S. P., Wu, D., Yi, G. S., Su, H. B., & Zhang, Y. G. (2015). An enzyme mimic ammonium polymer as a single catalyst for glucose dehydration to 5-hydroxymethylfurfural. Green Chemistry, 17, 2348–2352. DOI: 10.1039/c4gc02488e.

    Article  CAS  Google Scholar 

  • Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquidphase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 46, 7164–7183. DOI: 10.1002/anie.2006 04274.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d.

    Article  CAS  Google Scholar 

  • Danon, B., Marcotullio, G., & de Jong, W. (2014). Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chemistry, 16, 39–54. DOI: 10.1039/c3gc41351a.

    Article  CAS  Google Scholar 

  • De, S., Dutta, S., & Saha, B. (2011). Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethyl-furfural with aluminium chloride catalyst in water. Green Chemistry, 13, 2859–2868. DOI: 10.1039/c1gc15550d.

    Article  CAS  Google Scholar 

  • Deng, T. S., Cui, X. J., Qi, Y. Q., Wang, Y. X., Hou, X. L., & Zhu, Y. L. (2012). Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chemical Communications, 48, 5494–5496. DOI: 10.1039/c2cc00122e.

    Article  CAS  Google Scholar 

  • Fringuelli, F., Pizzo, F., & Vaccaro, L. (2001). Lewis-acid catalyzed organic reactions in water. The case of AlCl3, TiCl4 and SnCl4 believed to be unusable in aqueous medium. The Journal of Organic Chemistry, 66, 4719–4722. DOI: 10.1021/jo010373y.

    Article  CAS  Google Scholar 

  • Gandini, A., Coelho, D., Gomes, M., Reis, B., & Silvestre, A. (2009). Materials from renewable resources based on furan monomers and furan chemistry: Work in progress. Journal of Materials Chemistry, 19, 8656–8664. DOI: 10.1039/b909377j.

    Article  CAS  Google Scholar 

  • Hansen, T. S., Mielby, J., & Riisager, A. (2011). Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chemistry, 13, 109–114. DOI: 10.1039/c0gc00355g.

    Article  CAS  Google Scholar 

  • Hu, S. Q., Zhang, Z. F., Song, J. L., Zhou, Y. X., & Han, B. X. (2009). Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl 4 in an ionic liquid. Green Chemistry, 11, 1746–1749. DOI: 10.1039/b914601f.

    Article  CAS  Google Scholar 

  • Hu, L., Sun, Y., Lin, L., & Liu, S. J. (2012). 12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 47, 289–294. DOI: 10.1016/j. biombioe. 2012.09.032.

    Article  CAS  Google Scholar 

  • Huber, G. W., Chheda, J. N., Barrett, C. J., & Dumesic, J. A, (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308, 1446–1450. DOI: 10.1126/science.1111166.

    Article  CAS  Google Scholar 

  • Jiménez-Morales, I., Teckchandani-Ortiz, A., Santamaría-González, J., Maireles-Torres, P., & Jiménez-López, A. (2014). Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Applied Catalysis B, 144, 22–28. DOI: 10.1016/j.apcatb.2013.07.002.

    Article  Google Scholar 

  • Khokhlova, E. A., Kachala, V. V., & Ananikov V. P. (2012). The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3-An efficient dual-function metal-free promoter for environmentally benign applications. ChemSusChem, 5, 783–789. DOI: 10.1002/cssc. 201100670.

    Article  CAS  Google Scholar 

  • Kuster, B. F. M., & van der Baan, H. S. (1977). The influence of the initial and catalyst concentrations on the dehydration of d-fructose. Carbohydrate Research, 54, 165–176. DOI: 10.1016/s0008-6215(00)84806-5.

    Article  CAS  Google Scholar 

  • Kuster, B. M. F. (1990). 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch, 42, 314–321. DOI: 10.1002/star. 19900420808.

    Article  CAS  Google Scholar 

  • Matsumiya, H., & Hara, T. (2015). Conversion of glucose into 5-hydroxymethylfurfural with boric acid in molten mixtures of choline salts and carboxylic acids. Biomass and Bioenergy, 72, 227–232. DOI: 10.1016/j.biombioe.2014.11.001.

    Article  CAS  Google Scholar 

  • Moreau, C., Belgacem, M. N., & Gandini, A. (2004). Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Topics in Catalysis, 27, 11–30. DOI: 10.1023/b:toca.0000013537.13540.0e.

    Article  CAS  Google Scholar 

  • Moreau, C., Finiels, A., & Vanoye, L. (2006). Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. Journal of Molecular Catalysis A, 253, 165–169. DOI: 10.1016/j.molcata.2006.03.046.

    Article  CAS  Google Scholar 

  • Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A, 373, 1–56. DOI: 10.1016/j.apcata.2009.10.008.

    Article  CAS  Google Scholar 

  • Peleteiro, S., Da Costa Lopes, A. M., Garrote, G., Parajó, J. C, & Bogel-Lukasik, R. (2015). Simple and efficient fur fural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Industrial & Engineer ing Chemistry Research, 54, 8368–8373. DOI: 10.1021/acs.iecr.5b01771.

    Article  CAS  Google Scholar 

  • Román-Leshkov, Y., Chheda, J. N., & Dumesic, J. A. (2006). Phase modifiers promote efficient production of hydrox-ymethylfurfural from fructose. Science, 312, 1933–1937. DOI: 10.1126/science.1126337.

    Article  Google Scholar 

  • Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447, 982–985. DOI: 10.1038/nature05923.

    Article  Google Scholar 

  • Román-Leshkov, Y., & Dumesic, J. A. (2009). Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Topics in Catalysis, 52, 297–303. DOI: 10.1007/s11244-008-9166-0.

    Article  Google Scholar 

  • Rose, I. C., Epstein, N., & Watkinson, A. P. (2000). Acidcatalyzed 2-furaldehyde (furfural). Decomposition kinetics. Industrial & Engineering Chemistry Research, 39, 843–845. DOI: 10.1021/ie990550+.

    Article  CAS  Google Scholar 

  • Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxy-methylfurfural production from biomass in biphasic solvents. Green Chemistry, 16, 24–38. DOI: 10.1039/c3gc41324a.

    Article  CAS  Google Scholar 

  • Ståhlberg, T., Sørensen, M. G., & Riisager, A. (2010). Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chemistry, 12, 321–325. DOI: 10.1039/b916354a.

    Article  Google Scholar 

  • Ståhlberg, T., Rodriguez-Rodriguez, S., Fristrup, P., & Riisager, A. (2011). Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chemistry–A European Journal, 17, 1456–1464. DOI: 10.1002/chem.201002171.

    Article  Google Scholar 

  • Tong, X. L., Ma, Y., & Li, Y. D. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A, 385, 1–13. DOI: 10.1016/j.apcata.2010.06.049.

    Article  CAS  Google Scholar 

  • Weingarten, R., Tompsett, G. A., Conner, W. C., & Huber, G. W. (2011). Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. Journal of Catalysis, 279, 174–182. DOI: 10.1016/j.jcat.2011.01.013.

    Article  CAS  Google Scholar 

  • Wu, L. Q., Song, J. L., Zhang, B. B., Zhou, B. W., Zhou, H. C., Fan, H. L., Yang, Y. Y., & Han, B. X. (2014). Very efficient conversion of glucose to 5-hydroxymethylfurfural in DBU-based ionic liquids with benzenesulfonate anion. Green Chemistry, 16, 3935–3941. DOI: 10.1039/c4gc00311j.

    Article  CAS  Google Scholar 

  • Yang, Y., Hu, C. W., & Abu-Omar, M. M. (2012). Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 · 6H2O catalyst in a biphasic solvent system. Green Chemistry, 14, 509–513. DOI: 10.1039/c1gc15972k.

    Article  Google Scholar 

  • Yang, Y., Hu, C. W., & Abu-Omar, M. M. (2013). The effect of hydrochloric acid on the conversion of glucose to 5-hydroxymethylfurfural in AlCl3–H2O/THF biphasic medium. Journal of Molecular Catalysis A, 376, 98–102. DOI: 10.1016/j.molcata.2013.04.016.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Wang, Q., Xie, H. B., Liu, W. J., & Zhao, Z. B. K. (2011). Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids. ChemSusChem, 4, 131–138. DOI: 10.1002/cssc.2010 00279.

    Article  Google Scholar 

  • Zhang, J., Cao, Y., Li, H. Q., & Ma, X. B. (2014). Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid. Chemical Engineering Journal, 237, 55–61. DOI: 10.1016/j.cej.2013.10.007.

    Article  CAS  Google Scholar 

  • Zhao, H. B., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 316, 1597–1600. DOI: 10.1126/science.1141199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hai Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZL., Wang, XY., Shen, MY. et al. Synthesis of 5-hydroxymethylfurfural from glucose in a biphasic medium with AlCl3 and boric acid as the catalyst. Chem. Pap. 70, 1649–1657 (2016). https://doi.org/10.1515/chempap-2016-0101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0101

Keywords

Navigation