Skip to main content
Log in

Co-precipitation behaviour of titanium-containing silicate solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The co-precipitation behaviour of a simulated Al2(SO4)3-TiOSO4-Na2SiO3 solution that imitated the lixivium of Ti-bearing blast furnace slag (Ti-slag) leached by sulphuric acid was investigated in this study. Various chemical analyses were employed to study the selective precipitation of multiple target components. Based on the high-added-value applications of Ti-slag, a new method was developed to prepare aluminium titanate composites from titanium-containing silicates. The findings demonstrate that the onsets of Ti and Al precipitation occur at pH values of 3.5 and 5.0, respectively, followed by Si precipitation. The particle sizes of the co-precipitates were greatly influenced by the precipitants, pH and the initial Al/Ti mole ratio. The results also show that the precipitation ratio of Ti, Al and Si generally increases with the pH and temperature, regardless of the Al/Ti mole ratio. The Si-O-Al, Ti-O-Al, and Ti-O-Si bonds that were formed were dependent on the pH and the initial Al/Ti mole ratio. There was a synthesis path for β-Al2TiO5 (AT) from the solid-state reaction between rutile and α-Al2O3 at 1362.5°C. The AT composites were successfully prepared by sintering the co-precipitates at 1450°C, which exhibited good thermal stability as estimated by the XRD measurements of the sample annealed at 1200°C for 4 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aravind, P. R., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2006). Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous and Mesoporous Materials, 96, 14–20. DOI: 10.1016/j.micromeso.2006.06.014.

    Article  CAS  Google Scholar 

  • Belver, C., Muńoz, M. A. B., & Vicente, M. A. (2002). Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of Materials, 14, 2033–2043. DOI: 10.1021/cm0111736.

    Article  CAS  Google Scholar 

  • Chakravorty, A. K., & Ghosh, D. K. (1988). Synthesis and 980°C phase development of some mullite gels. Journal of the American Ceramic Society, 71, 978–987. DOI: 10.1111/j.1151-2916.1988.tb07568.x.

    Article  CAS  Google Scholar 

  • Chen, D. S., Zhao, L. S., Liu, Y. H., Qi, T., Wang, J. C., & Wang, L. N. (2013). A novel process for recovery of iron, titanium and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Journal of Hazardous Materials, 244–245, 588–595. DOI: 10.1016/j.jhazmat.2012.10.052.

    Article  Google Scholar 

  • Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: Theory and experiment. Chemical Physics, 339, 44–56. DOI: 10.1016/j.chemphys.2007.07.020.

    Article  Google Scholar 

  • Du, X. L., Wang, Y. Q., Su, X. H., & Li, J. G. (2009). Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology, 192, 40–46. DOI: 10.1016/j.powtec.2008.11.008.

    Article  CAS  Google Scholar 

  • Duan, J. M., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100–102, 475–502. DOI: 10.1016/s0001-8686(02)00067-2.

    Article  Google Scholar 

  • El-Masry, M. H., Sadek, O. M., & Mekhemer, W. K. (2004). Purification of raw surface water using electro-coagulation method. Water, Air & Soil Pollution, 158, 373–385. DOI: 10.1023/b:wate.0000044857.02199.45.

    Article  CAS  Google Scholar 

  • Farmer, V. C. (1974). The infrared spec t ra of minerals. London, UK: Mineralogical Society. DOI: 10.1180/mono-4.

    Book  Google Scholar 

  • Huang, Y. X., Senos, A. M. R., Rocha, J., & Baptista, J. L. (1997). Gel formation in mullite precursors obtained via tetraethylorthosilicate (TEOS) pre-hydrolysis. Journal of Materials Science, 32, 105–110. DOI: 10.1023/a:1018575115 770.

    Article  CAS  Google Scholar 

  • Huang, Y. X., Senos, A. M. R., & Baptista, J. L. (1998). Effect of excess SiO2 on the reaction sintering of aluminium titanate-25 vol. % mullite composites. Ceramics International, 24, 223–228. DOI: 10.1016/s0272-8842(97)00006-0.

    Article  CAS  Google Scholar 

  • Jung, Y. S., Kim, D. W., Kim, Y. S., Park, E. K., & Baeck, S. H. (2008). Synthesis of alumina–titania solid solution by sol–gel method. Journal of Physics and Chemistry of Solids, 69, 1464–1467. DOI: 10.1016/j.jpcs.2007.10.037.

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, M. W., & Yu, J. S. (2011). Recycle of silicate waste into mesoporous materials. Environmental Science & Technology, 45, 3695–3701. DOI: 10.1021/es103510r.

    Article  CAS  Google Scholar 

  • Kimura, T., Suzuki, M., Ikeda, T., Kato, K., Maeda, M., & Tomura, S. (2006). Silica-based mesoporous materials derived from Ti containing layered polysilicate kanemite. Microporous and Mesoporous Materials, 95, 146–153. DOI: 10.1016/j.micromeso.2006.05.021.

    Article  CAS  Google Scholar 

  • Kurc, B. (2014). Gel electrolytes based on poly(acrylonitrile)/ sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries. Electrochimica Acta, 125, 415–420. DOI: 10.1016/j.electacta.2014.01.117.

    Article  CAS  Google Scholar 

  • Lee, S. O., Jung, K. H., Oh, C. J., Lee, Y. H., Tran, T., & Kim, M. J. (2009). Precipitation of fine aluminium hydroxide from Bayer liquors. Hydrometallurgy, 98, 156–161. DOI: 10.1016/j.hydromet.2009.04.014.

    Article  CAS  Google Scholar 

  • Li, L. S., Liu, J. B., Wu, X. R., Ren, X., Bing, W. B., & Wu, L. S. (2010). Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere. ISIJ International, 50, 327–329. DOI: 10.2355/isijinternational.50.327.

    Article  CAS  Google Scholar 

  • Li, L. S., & Lu, T. T. (2011). Condensation mechanism and influencing factor of stability of complicated silicic acid system. AICHE Journal, 57, 1339–1343. DOI: 10.1002/aic.12374.

    Article  CAS  Google Scholar 

  • Liu, Q., Wang, A. Q., Wang, X. H., Gao, P., Wang, X. D., & Zhang, T. (2008). Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous and Mesoporous Materials, 111, 323–333. DOI: 10.1016/j.micromeso.2007.08.007.

    Article  CAS  Google Scholar 

  • Liu, P. C., Zhu, Y. Z., Ma, J. H., Yang, S. G., Gong, J. H., & Jian, X. (2013). Effect of boehmite sol on the crystallization behaviour and densification of mullite formed from a sol–gel precursor. Progress in Natural Science: Materials International, 23, 145–151. DOI: 10.1016/j.pnsc.2013.02.004.

    Article  Google Scholar 

  • Lü, H. H., Li, N., Wu, X. R., Li, L. S., Gao, Z. F., & Shen, X. M. (2013). A novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible-light-response. Metallurgical and Materials Transaction B, 44, 1317–1320. DOI: 10.1007/s11663-013-9973-y.

    Article  Google Scholar 

  • Matsuda, A., Higashi, Y., Tadanaga, K., & Tatsumisago, M. (2006). Hot-water treatment of sol–gel derived SiO2–TiO2 microparticles and application to electrophoretic deposition for thick films. Journal of Materials Science, 41, 8101–8108. DOI: 10.1007/s10853-006-0419-7.

    Article  CAS  Google Scholar 

  • Oikonomou, P., Dedeloudis, C., Stournaras, C. J., & Ftikos, C. (2007). Stabilized tialite–mullite composites with low thermal expansion and high strength for catalytic converters. Journal of the European Ceramic Society, 27, 3475–3482. DOI: 10.1016/j.jeurceramsoc.2006.07.020.

    Article  CAS  Google Scholar 

  • Okada, K., & Otsuka, N. (1986). Characterization of the spinel phase from SiO2–Al2O3 xerogels and the formation process of mullite. Journal of the American Ceramic Society, 69, 652–656. DOI: 10.1111/j.1151-2916.1986.tb07466.x.

    Article  CAS  Google Scholar 

  • Periyat, P., Baiju, K. V., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2008). High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition. Applied Catalysis A, 349, 13–19. DOI: 10.1016/j.apcata.2008. 07.022.

    Article  CAS  Google Scholar 

  • Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions. Oxford, UK: Pergamon.

    Google Scholar 

  • Richmond, W. R., Jones, R. L., & Fawell, P. D. (1998). The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chemical Engineering Journal, 71, 67–75. DOI: 10.1016/s1385-8947(98)00105-3.

    Article  CAS  Google Scholar 

  • Schneider, H., & Komarneni, S. (2005). Mullite. Weinheim, Germany: Wiley. DOI: 10.1002/3527607358.

    Book  Google Scholar 

  • Sobhani, M., Ebadzadeh, T., & Rahimipour, M. R. (2014). Formation and densification behavior of reaction sintered alumina-20 wt. % aluminium titanate nano-composites. International Journal of Refractory Metals and Hard Materials, 47, 49–53. DOI: 10.1016/j.ijrmhm.2014.06.018.

    Article  CAS  Google Scholar 

  • Wellia, D. V., Xu, Q. C., Sk, M. A., Lim, K. H., Lim, T. M., & Tan, T. T. Y. (2011). Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Applied Catalysis A, 401, 98–105. DOI: 10.1016/j.apcata.2011.05.003.

    Article  CAS  Google Scholar 

  • Wu, Z. J., Yue, H. F., Li, L. S., Jiang, B. F., Wu, X. R., & Wang, P. (2010). Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag. Journal of Power Sources, 195, 2888–2893. DOI: 10.1016/j.jpowsour.2009.11.058.

    Article  CAS  Google Scholar 

  • Wu, X. R., Wang, H. H., Li, L. S., Lü, H. H., Wu, Z. J., & Shen, X. M. (2013a). Synthesis of cordierite powder from blast furnace slag. Transactions of the Indian Ceramic Society, 72, 197–200. DOI: 10.1080/0371750x.2013.851622.

    Article  CAS  Google Scholar 

  • Wu, X. R., Lü, H. H., Li, L. S., Wang, P., Shen, X. M., Zhu, J. H., Cao, F. B., & Li, M. H. (2013b). China Patent No. 201110101537.3. Beijing, China: China Patent & Trademark Office. http://www.pss-system.gov.cn/sipopublicsearch/search/searchHome-searchIndex.shtml?params=991CFE73D4DF553253D44E119219BF31366856FF4B1522 26CAE4DB031259396A

    Google Scholar 

  • Xie, X., Sun, J., Liu, Y., & Jiang, W. (2010). Use of silica sol as a transient phase for fabrication of aluminium titanate–mullite ceramic composite. Scripta Materialia, 63, 641–644. DOI: 10.1016/j.scriptamat.2010.05.038.

    Article  CAS  Google Scholar 

  • Zhou, S. X., Antonietti, M., & Niederberger, M. (2007). Low-temperature synthesis of γ-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media. Small, 3, 763–767. DOI: 10.1002/smll.200700027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hong Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, HH., Wu, MZ., Zhang, ZL. et al. Co-precipitation behaviour of titanium-containing silicate solution. Chem. Pap. 70, 1632–1641 (2016). https://doi.org/10.1515/chempap-2016-0100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0100

Keywords

Navigation