Skip to main content
Log in

Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

As a novel process intensification technology, microwave-assisted continuous reaction distillation (MRD) was proposed for the esterification reaction and separation of ethyl acetate (EtOAc). The effects of reflux ratio, mole ratio of acetic acid (HOAc) to ethanol (EtOH), reboiler duty, microwave power on EtOH conversions, EtOAc purity and mass ratio of distillate to feed (D/F) were explored. In comparison with conventional heating, the experimental results revealed that the EtOAc purity in the distillate under microwave conditions (MC) was improved. Computer simulations for conventional and MRD systems were performed using the Aspen Plus non-equilibrium stage model to substantiate the experimental results. The model predictions are in good agreement with the experimental data, revealing the accuracy and reliability of the non-equilibrium model. This new MRD process can be an effective and productive method of ester production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. I. (2010). Process intensification of reactive distillation for the synthesis of n-propyl propionate: The effects of microwave radiation on molecular separation and esterification reaction. Industrial & Engineering Chemistry Research, 49, 10287–10296. DOI: 10.1021/ie100555h.

    Article  CAS  Google Scholar 

  • Altman, E., Stefanidis, G. D., van Gerven, T., & Stankiewicz, A. (2012). Microwave-promoted synthesis of n-propyl propionate using homogeneous zinc triflate catalyst. Industrial & Engineering Chemistry Research, 51, 1612–1619. DOI: 10.1021/ie200687m.

    Article  CAS  Google Scholar 

  • Barbosa, S. L., Dabdoub, M. J., Hurtado, G. R., Klein, S. I., Baroni, A. C. M., & Cunha, C. (2006). Solvent free esterification reactions using Lewis acids in solid phase catalysis. Applied Catalysis A: General, 313, 146–150. DOI: 10.1016/j.apcata.2006.07.015.

    Article  CAS  Google Scholar 

  • Chemerinskiy, M. S. (2014). Microwave defrosting of coal. Coke and Chemistry, 57, 219–221. DOI: 10.3103/s1068364x140500 20.

    Article  Google Scholar 

  • Delobelle, V., Croquesel, J., Bouvard, D., Chaix, J. M., & Carry, C. P. (2015). Microwave sinter forging of alumina powder. Ceramics International, 41, 7910–7915. DOI: 10.1016/j.ceramint.2015.02.130.

    Article  CAS  Google Scholar 

  • Ding, Z., Ding, H., & Hou, J. (2012). Kinetics of catalytic synthesis of ethyl acetate under microwave irradiation. Chemical Reaction Engineering and Technology, 2012, 458–463.

    Google Scholar 

  • Dutia, P. (2004). Ethyl acetate: A techno-commercial profile. Chemical Weekly, 49, 179–186.

    Google Scholar 

  • Fukushima, J., Kashimura, K., Takayama, S., Sato, M., Sano, S., Hayashi, Y., & Takizawa, H. (2013). In-situ kinetic study on non-thermal reduction reaction of CuO during microwave heating. Materials Letters, 91, 252–254. DOI: 10.1016/j.matlet.2012.09.114.

    Article  CAS  Google Scholar 

  • Gao, X., Li, X., Zhang, J., Sun, J., & Li, H. (2013). Influence of a microwave irradiation field on vapor–liquid equilibrium. Chemical Engineering Science, 90, 213–220. DOI: 10.1016/j.ces.2012.12.037.

    Article  CAS  Google Scholar 

  • Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27, 279–282. DOI: 10.1016/s0040-4039(0)83996-9.

    Article  CAS  Google Scholar 

  • Guan, J. J., Zhang, T. B., Hui, M., Yin, H. C., Qiu, A. Y., & Liu, X. Y. (2011). Mechanism of microwave-accelerated soy protein isolate–saccharide graft reactions. Food Research International, 44, 2647–2654. DOI: 10.1016/j.foodres.2011.05.015.

    Article  CAS  Google Scholar 

  • Hassini, L., Peczalski, R., & Gelet, J. L. (2015). Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 286, 636–644. DOI: 10.1016/j.powtec.2015.09. 009.

    Article  CAS  Google Scholar 

  • Horikoshi, S., Matsubara, A., Takayama, S., Sato, M., Sakai, F., Kajitani, M., Abe, M., & Serpone, N. (2010). Characterization of microwave effects on metal-oxide materials: Zinc oxide and titanium dioxide. Applied Catalysis B: Environmental, 99, 490–495. DOI: 10.1016/j.apcatb.2009.07.028.

    Article  CAS  Google Scholar 

  • Hu, S., Zhang, B. J., Hou, X. Q., Li, D. L., & Chen, Q. L. (2011). Design and simulation of an entrainer-enhanced ethyl acetate reactive distillation process. Chemical Engineering and Processing: Process Intensification, 50, 1252–1265. DOI: 10.1016/j.cep.2011.07.012.

    Article  CAS  Google Scholar 

  • Kappe, C. O. (2008). Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 37, 1127–1139. DOI: 10.1039/b803001b.

    Article  CAS  Google Scholar 

  • Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwaveaccelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35, 717–727. DOI: 10.1021/ ar010074v.

    Article  CAS  Google Scholar 

  • Lv, B., Liu, G., Dong, X., Wei, W., & Jin, W. (2012). Novel reactive distillation–pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle. Industrial & Engineering Chemistry Research, 51, 8079–8086. DOI: 10.1021/ie3004072.

    Article  CAS  Google Scholar 

  • Mandal, A. K., Sen, S., Mandal, S., Guha, C., & Sen, R. (2015). Energy efficient melting of glass for nuclear waste immobilization using microwave radiation. International Journal of Green Energy, 12, 1280–1287. DOI: 10.1080/15435075.2014.895735.

    Article  CAS  Google Scholar 

  • Mavandadi, F., & Lidstrom, P. (2004). Microwave-assisted chemistry in drug discovery. Current Topics in Medicinal Chemistry, 4, 773–792. DOI: 10.2174/1568026043451078.

    Article  CAS  Google Scholar 

  • Nikačevi´c, N. M., Huesman, A. E. M., Van den Hof, P. M. J., & Stankiewicz, A. I. (2012). Opportunities and challenges for process control in process intensification. Chemical Engineering and Processing: Process Intensification, 52, 1–15. DOI: 10.1016/j.cep.2011.11.006.

    Article  Google Scholar 

  • Ramesh, S., Jai Prakash, B. S., & Bhat, Y. S. (2010). Enhancing Brønsted acid site activity of ion exchanged montmorillonite by microwave irradiation for ester synthesis. Applied Clay Science, 48, 159–163. DOI: 10.1016/j.clay.2009.11.053.

    Article  CAS  Google Scholar 

  • Segovia-Hernández, J. G., Hernández, S., & Bonilla Petriciolet, A. (2015). Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification, 97, 134–143. DOI: 10.1016/j.cep.2015.09.004.

    Article  Google Scholar 

  • Shekarriz, M., Taghipoor, S., Khalili, A. A., & Jamarani, M. S. (2003). Esterification of carboxylic acids with alcohols under microwave irradiation in the presence of zinc triflate. Journal of Chemical Research–Part S, 2003, 172–173.

    Google Scholar 

  • Sundmacher, K., & Kienle, A. (Eds.) (2003). Reactive distillation: Status and future directions. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Toukoniitty, B., Mikkola, J. P., Eränen, K., Salmi, T., & Murzin, D. Y. (2005). Esterification of propionic acid under microwave irradiation over an ion-exchange resin. Catalysis Today, 100, 431–435. DOI: 10.1016/j.cattod.2004.09.075.

    Article  CAS  Google Scholar 

  • Tsukahara, Y., Higashi, A., Yamauchi, T., Nakamura, T., Yasuda, M., Baba, A., & Wada, Y. (2010). In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. The Journal of Physical Chemistry C, 114, 8965–8970. DOI: 10.1021/jp100509h.

    Article  CAS  Google Scholar 

  • Urselmann, M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Computers and Chemical Engineering, 35, 787–805. DOI: 10.1016/j.compchemeng.2011.01. 038.

    Article  CAS  Google Scholar 

  • Vázquez-Ojeda, M., Segovia-Hernández, J. G., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Industrial & Engineering Chemistry Research, 51, 5856–5865. DOI: 10.1021/ie200929t.

    Article  Google Scholar 

  • Xia, S., Dong, X., Zhu, Y., Wei, W., Xiangli, F., & Jin, W. (2011). Dehydration of ethyl acetate–water mixtures using PVA/ceramic composite pervaporation membrane. Separation and Purification Technology, 77, 53–59. DOI: 10.1016/j.seppur.2010.11.019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jie Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Qi, JL., Gao, YJ. et al. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate. Chem. Pap. 70, 1380–1388 (2016). https://doi.org/10.1515/chempap-2016-0069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0069

Keywords

Navigation