Skip to main content
Log in

Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The most acceptable method for preparing glycerophosphocholine is to hydrolyse the natural phosphatidylcholine and use the quaternary ammonium base resin, as a promising heterogeneous catalyst can simplify the craft and minimise the problems existing in the homogeneous catalytic process. However, most of the resins reported in the literature are commercial trimethyl benzyl ammonium base resins and the application of other longer carbon-chain quaternary ammonium resins has not been reported. In the present work, a series of quaternary ammonium base resins were prepared from chloromethyl polystyrene microspheres and different tertiary amines and were used to prepare glycerophosphocholine from natural phosphatidylcholine. The factors affecting the exchange capacity and activity of the resin were investigated. The results showed that the resin possessed a better activity and stability under the following conditions: 1,4-dioxane as solvent, triethylamine as amination agent, reaction temperature of 60°C and amination time of 3 h; it was then used in the methanolysis of phosphatidylcholine by ultrasound-assisted reaction at ambient temperature, with the conversion of phosphatidylcholine attaining 97 % after 4 h. The catalyst was easy to separate from the reaction mixture and could also be readily available for repeat use; the activity and stability were largely consistent after six repeat uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S. W., Waqar, F., Malik, M. A., Yasin, T., & Muhammad, B. J. (2013). Study on the synthesis of a macroporous ethylacrylate-divinylbenzene copolymer, its conversion into a bi-functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater. Journal of Applied Polymer Science, 129, 2234–2243. DOI: 10.1002/app.38940.

    Article  CAS  Google Scholar 

  • Bariwal, J., & Van der Eycken, E. (2013). C-N bond forming cross-coupling reactions: an overview. Chemical Society Reviews, 42, 9283–9303. DOI: 10.1039/c3cs60228a.

    Article  CAS  Google Scholar 

  • Bialk, M., Prucker, O., & Ruhe, J. (2002). Grafting of polymers to solid surfaces by using immobilized methacrylates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198, 543–549. DOI: 10.1016/s0927–7757(01)00958-x.

    Article  Google Scholar 

  • Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., & Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial & Engineering Chemistry Research, 45, 3009–3014. DOI: 10.1021/ie051402o.

    Article  CAS  Google Scholar 

  • Feng, Y. H., He, B. Q., Cao, Y. H., Li, J. X., Liu, M., Yan, F., & Liang, X. P. (2010). Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresource Technology, 101, 1518–1521. DOI: 10.1016/j.biortech.2009.07.084.

    Article  CAS  Google Scholar 

  • Fernandez-Murray, J. P., & McMaster, C. R. (2005). Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. The Journal of Biological Chemistry, 280, 38290–38296. DOI: 10.1074/jbc.m507700200.

    Article  CAS  Google Scholar 

  • Gey, C., & Seeger, K. (2013). Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy. Mechanisms of Ageing and Development, 134, 130–138. DOI: 10.1016/j.mad.2013.02.002.

    Article  CAS  Google Scholar 

  • Gomes, J. F., Puna, J. F., Bordado, J. C., & Correia, M. J. N. (2008). Development of heterogeneous catalysts for transes-terification of triglycerides. Reaction Kinetics and Catalysis Letters, 95, 273–279. DOI: 10.1007/s11144–008–5372–9.

    Article  CAS  Google Scholar 

  • Ham, H. T., Choi, Y. S., & Chung, I. J. (2005). An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science, 286, 216–223. DOI: 10.1016/j.jcis. 2005.01.002.

    Article  CAS  Google Scholar 

  • Ichihara, K., Iwasaki, H., Ueda, K., Takizawa, R., Naito, H., & Tomosugi, M. (2005). Synthesis of phosphatidylcholine: An improved method without using the cadmium chloride complex of sn-glycero-3-phosphocholine. Chemistry and Physics of Lipids, 137, 94–99. DOI: 10.1016/j.chemphyslip.2005.06. 001.

    Article  CAS  Google Scholar 

  • Isahak, W. N. R. W., Ismail, M., Jahim, J. M., Salimon, J., & Yarmo, M. A. (2012). Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil. Chemical Papers, 66, 178–187. DOI: 10.2478/s11696–011–0125-z.

    Article  CAS  Google Scholar 

  • Kawamura, T., Okubo, T., Sato, K., Fujita, S., Goto, K., Hamaoka, T., & Iemitsu, M. (2012). Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition, 28, 1122–1126. DOI: 10.1016/j.nut.2012.02.011.

    Article  CAS  Google Scholar 

  • Kidd, P. M. (2007). GPC (GlyceroPhosphoCholine) mind-body power for active living and healthy aging. St. George, UT, USA: Total Health Communications.

    Google Scholar 

  • Kim, M., Salley, S. O., & Ng, K. Y. S. (2008). Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy & Fuels, 22, 3594–3599. DOI: 10.1021/ef800443x.

    Article  CAS  Google Scholar 

  • Kralik, M. (2014). Adsorption, chemisorption, and catalysis. Chemical Papers, 68, 1625–1638. DOI: 10.2478/s11696–014-0624–9.

    CAS  Google Scholar 

  • Langer, R., Diskin-Posner, Y., Leitus, G., Shimon, L. J. W., Ben-David, Y., & Milstein, D. (2011). Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angewandte Chemie International Edition, 50, 9948–9952. DOI: 10.1002/anie.201104542.

    Article  CAS  Google Scholar 

  • Li, H. Y., Zhang, X. L., Zhang, J. B., Zhang, T. T., & Zhao, B. X. (2014). Preparing L-a-glycerophosphocholine in a phase-transfer catalytic reaction: Kinetic study. International Journal of Chemical Kinetics, 46, 169–175. DOI: 10.1002/kin.20840.

    Article  Google Scholar 

  • May, P., Khan, U., Hughes, J. M., & Coleman, J. N. (2012). Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. The Journal of Physical Chemistry C, 116, 11393–11400. DOI: 10.1021/jp302365w.

    Article  CAS  Google Scholar 

  • Mills, J. E., Maryanoff, C. A., Cosgrove, R. M., Scott, L., & McComsey, D. F. (1984). The reaction of amines with methylene chloride. A brief review. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 16, 97–114. DOI: 10.1080/00304948409356172.

    Article  CAS  Google Scholar 

  • Seo, D. W., Lim, Y. D., Hossain, M. A., Lee, S. H., Lee, H. C., Jang, H. H., Choi, S. Y., & Kim, W. G. (2013). Anion conductive poly(tetraphenyl phthalazine ether sulfone) containing tetra quaternary ammonium hydroxide for alkaline fuel cell application. International Journal of Hydrogen Energy, 38, 579–587. DOI: 10.1016/j.ijhydene.2012.07.044.

    Article  CAS  Google Scholar 

  • Tronconi, G. (1990). WO Patent No. 90/13552. Geneva, Switzerland: World Intellectual Property Organization.

    Google Scholar 

  • Tronconi, G., & Coccoli, C. (1991). WO Patent No. 91/15494. Geneva, Switzerland: World Intellectual Property Organization.

    Google Scholar 

  • Wang, F. (2003). The standard manual for ion exchange resin. Beijing, China: Standard Press of China. (in Chinese)

    Google Scholar 

  • Wu, Q. Y. (2011). Polymer physics. Beijing, China: Higher Education Press. (in Chinese)

    Google Scholar 

  • Yan, H. P., Yang, Y., Tong, D. M., Xiang, X., & Hu, C. W. (2009). Catalytic conversion of glucose to 5-hydroxymethyl-furfural over SO42−/ZrO2 and SO42−/ZrO2-Al2O3 solid acid catalysts. Catalysis Communications, 10, 1558–1563. DOI: 10.1016/j.catcom.2009.04.020.

    Article  CAS  Google Scholar 

  • Yang, L., Lv, L., Zhang, S. J., Pan, B. C., & Zhang, W. M. (2011). Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chemical Engineering Journal, 178, 161–167. DOI: 10.1016/j.cej.2011.10.039.

    Article  CAS  Google Scholar 

  • Zhang, Y., Stanciulescu, M., & Ikura, M. (2009). Rapid transesterification of soybean oil with phase transfer catalysts. Applied Catalysis A: General, 366, 176–183. DOI: 10.1016/j.apcata. 2009.07.001.

    Article  CAS  Google Scholar 

  • Zhang, T. T., Zhang, X. L., Li, H. Y., Bai, W. L., & Zhao, B. X. (2013). Kinetic evaluation of the ethanolysis of phosphatidylcholine catalyzed by choline hydroxide. Reaction Kinetics, Mechanisms and Catalysis, 110, 31–39. DOI: 10.1007/s11144–013–0579–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Zhang, XL., Yan, B. et al. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine. Chem. Pap. 70, 706–712 (2016). https://doi.org/10.1515/chempap-2016-0023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0023

Keywords

Navigation