Skip to main content

Advertisement

Log in

Correlations for mixing energy in processes using Rushton turbine mixer

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study reports the research results on a mixing process using a stirred tank mixer under the action of a rotating magnetic field (RMF). Dimensionless correlations are proposed to predict the power consumption and mixing time for the mixing systems analysed. The results suggest that the mixing behaviour of the experimental set-ups tested may be assessed using the dimensionless mixing energy as the product of the power input and mixing time. In addition, an innovative strategy is proposed on the basis of the synergistic effect of the rotational Rushton turbine and the RMF generator. The values of the dimensionless energy thus obtained were used to compare the mixing process performed by the mixing devices tested. It is shown that the mixing process under the RMF action has significantly higher values of energy consumption than the conventional Rushton turbine. The total energy consumption for the mixing process performed by the RMF mixer may be reduced by concomitant use of a rotational agitator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez, M. M., Arratia, P. E., & Muzzio, F. J. (2002). Laminar mixing in eccentric stirred tank system. The Canadian Journal of Chemical Engineering, 80, 546–557. DOI: 10.1002/cjce.5450800418.

    Article  CAS  Google Scholar 

  • Arjunwadkar, S. J., Sarvanan, K., Kulkarni, P. R., & Pandit, A. B. (1998). Gas—liquid mass transfer in dual impeller bioreactor. Biochemical Engineering Journal, 1, 99–106. DOI: 10.1016/s1385–8947(97)00083–1.

    Article  CAS  Google Scholar 

  • Delaplace, G., Leuliet, J. C., & Relandeau, V. (2000). Circulation and mixing times for helical ribbon impellers. Review and experiments. Experiments in Fluids, 28, 170–182. DOI: 10.1007/s003480050022.

    Article  Google Scholar 

  • Egedy, A., Varga, T., & Chovan, T. (2012). CFD modelling and video analysis based model validation for a stirred reactor. In I. D. L. Bogle, & M. Fairweather (Eds.), Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, 17–20 June, 2012, London (pp. 1123–1127). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0–444–59520–1.50083-x.

    Chapter  Google Scholar 

  • Gabelle, J. C., Augier, F., Carvalho, A., Rousset, R., & Morchain, J. (2011). Effect of tank size on ka and mixing time in aerated stirred reactors with non-Newtonian fluids. The Canadian Journal of Chemical Engineering, 89, 1139–1153. DOI: 10.1002/cjce.20571.

    Article  CAS  Google Scholar 

  • Hristov, J. (2010). Magnetic field assisted fluidization — a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. Reviews in Chemical Engineering, 26, 55–128. DOI: 10.1515/revce.2010.006.

    Article  CAS  Google Scholar 

  • Jafari, M., & Soltan Mohammadzadeh, J. S. (2005). Mixing time, homogenization energy and residence time distribution in a gas-induced contactor. Chemical Engineering Research and Design, 83, 452–459. DOI: 10.1205/cherd.04207.

    Article  CAS  Google Scholar 

  • Jaworski, Z., & Nienow, A. W. (1994). LDA measurements of flow fields with hydrofoil impellers in fluids with different rheological properties. In Proceedings of the 8th European Conference on Mixing, 21–23 September, 1994, University of Cambridge, UK (Institution of Chemical Engineers Symposium Series, Vol. 136, pp. 105–112).

    Google Scholar 

  • Karcz, J., Cudak, M., & Szoplik, J. (2005). Stirring of a liquid in a stirred tank with eccentrically located impeller. Chemical Engineering Science, 60, 2369–2380. DOI: 10.1016/j.ces.2004.11.018.

    Article  CAS  Google Scholar 

  • Kuzmanic, N., & Ljubicic, B. (2001). Suspension of floating solids with up-pumping pitched blade impellers; mixing time and power characteristics. Chemical Engineering Journal, 84, 325–333. DOI: 10.1016/s1385–8947(00)00382-x.

    Article  CAS  Google Scholar 

  • Kuzmanic, N., Zanetic, R., & Akrap, M. (2008). Impact of floating suspended solids on the homogenisation of the liquid phase in dual-impeller agitated vessel. Chemical Engineering and Processing: Process Intensification, 47, 663–669. DOI: 10.1016/j.cep.2006.12.010.

    Article  CAS  Google Scholar 

  • Liu, Z. H., Zheng, X. P., Liu, D., Wang, Y. D., & Tao, C. Y. (2014). Enhancement of liquid-liquid mixing in a mixer- settler by a double rigid-flexible combination impeller. Chemical Engineering and Processing: Process Intensification, 86, 69–77. DOI: 10.1016/j.cep.2014.10.007.

    Article  CAS  Google Scholar 

  • Masiuk, S. (2014). Mixing time for a reciprocating plate agitator with flapping blades. Chemical Engineering Journal, 79, 23–30. DOI: 10.1016/s1385–8947(00)00141–8.

    Article  Google Scholar 

  • Masiuk, S., Rakoczy, R., & Kordas, M. (2008). Comparison density of maximal energy for mixing process using the same agitator in rotational and reciprocating movements. Chemical Engineering and Processing: Process Intensification, 47, 1252–1260. DOI: 10.1016/j.cep.2007.04.004.

    Article  Google Scholar 

  • Metzner, A. B., & Otto, R. E. (1957). Agitation of non-Newtonian fluids. AIChE Journal, 3, 3–10. DOI: 10.1002/aic.690030103.

    Article  CAS  Google Scholar 

  • Moffatt, H. K. (1965). On fluid flow induced by a rotating magnetic field. Journal of Fluid Mechanics, 22, 521–528. DOI: 10.1017/s0022112065000940.

    Article  Google Scholar 

  • Nienow, A. W., & Elson, T. P. (1988). Aspects of mixing in rheologically complex fluids. Chemical Engineering Research and Design, 66, 5–15.

    CAS  Google Scholar 

  • Nishikawa, M., Ashiwake, K., Hashimoto, N., & Nagata, S. (1979). Agitation power and mixing time in off-centering mixing. International Chemical Engineering, 19, 153–160.

    Google Scholar 

  • Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (2004). Handbook of industrial mixing: Science and practice. Hoboken, NJ, USA: Wiley-Interscience.

    Google Scholar 

  • Polish Committee for Standardization (1963). Polish standard: Devices and intrinsically safe electrical circuits in coal mines — Rules of construction and test methods. PN-E-08107:1963. Warsaw, Poland. (in Polish)

    Google Scholar 

  • Rakoczy, R. (2010). Enhancement of solid dissolution process under the influence of rotating magnetic field. Chemical Engineering and Processing: Process Intensification, 49, 42–50. DOI: 10.1016/j.cep.2009.11.004.

    Article  CAS  Google Scholar 

  • Rakoczy, R., & Masiuk, S. (2010). Influence of transverse rotating magnetic field on enhancement of solid dissolution process. AIChE Journal, 56, 1416–1433. DOI: 10.1002/aic.12097.

    Article  CAS  Google Scholar 

  • Rakoczy, R., & Masiuk, S. (2011). Studies of a mixing process induced by a transverse rotating magnetic field. Chemical Engineering Science, 66, 2298–2308. DOI: 10.1016/j.ces. 2011.02.021.

    Article  CAS  Google Scholar 

  • Rakoczy, R. (2013). Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field. Chemical and Process Engineering: Process Intensification, 66, 1–11. DOI: 10.1016/j.cep.2013.01.012.

    Article  CAS  Google Scholar 

  • Woziwodzki, SZ., Broniarz-Press, L., & Ochowiak, M. (2010). Effect of eccentricity on transitional mixing in vessel equipped with turbine impellers. Chemical Engineering Research and Design, 88, 1607–1614. DOI: 10.1016/j.cherd.2010.04.007.

    Article  CAS  Google Scholar 

  • Xie, M. H., Xia, J. Y., Zhou, Z., Zhou, G. Z., Chu, J., Zhuang, Y. P., Zhang, S. L., & Noorman, H. (2014). Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions. Chemical Engineering Science, 106, 144–156. DOI: 10.1016/j.ces.2013.10.032.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Story.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Story, G., Kordas, M. & Rakoczy, R. Correlations for mixing energy in processes using Rushton turbine mixer. Chem. Pap. 70, 747–756 (2016). https://doi.org/10.1515/chempap-2016-0008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0008

Keywords

Navigation