Skip to main content
Log in

Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticiser and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40%, by contrast, the values of these parameters for Fe(III) transport ranged from 60% to almost 100%. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alguacil, F. J., & Alonso, M. (2000). Iron(III) transport using a supported liquid membrane containing Cyanex 921. Hydrometallurgy, 58, 81–88. DOI: 10.1016/s0304-386x(00)00133-x.

    Article  CAS  Google Scholar 

  • Alguacil, F. J., Alonso, M., Lopez, F. A., & Lopez-Delgado, A. (2010). Pseudo-emulsion membrane strip dispersion (PEMSD) pertraction of chromium(VI) using Cyphos IL 101 ionic liquid as carrier. Environmental Science & Technology, 44, 7504–7508. DOI: 10.1021/es101302b.

    Article  CAS  Google Scholar 

  • Arias, A., Saucedo, I., Navarro, R., Gallardo, V., Martinez, M., & Guibal, E. (2011). Cadmium(II) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Reactive and Functional Polymers, 71, 1059–1070. DOI: 10.1016/j.reactfunctpolym.2011.07.008.

    Article  CAS  Google Scholar 

  • Baczyńska, M., & Regel-Rosocka, M. (2013). Phosphonium ionic liquids as carriers of metal ions. Przemysł Chemiczny, 92, 1574–1576.

    Google Scholar 

  • Baczyńska, M., Regel-Rosocka, M., Nowicki, M., & Wiśniewski, M. (2015). Effect of the structure of the polymer inclusion membranes on Zn(II) transport from chloride aqueous solution. Journal of Applied Polymer Science, 132, 42319. DOI: 10.1002/app.42319.

    Google Scholar 

  • Cytec Industries (2008). Cyanex 272 extractant. Retreived June 10, 2015, from http://www.cytec.com/sites/default/files/datasheets/CYANEX%20272%20Brochure.pdf

  • Fontàs, C., Tayeb, R., Tingry, S., Hidalgo, M., & Seta, P. (2005). Transport of platinum(IV) through supported liquid membrane (SLM) and polymeric plasticized membrane (PPM). Journal of Membrane Science, 263, 96–102. DOI: 10.1016/j.memsci.2005.04.008.

    Article  Google Scholar 

  • Förch, R., Schönherr, H., Tobias, A., & Jenkins, A. (2009). Surface design: Applications in bioscience and nanotechnology. Weinheim, Germany: Wiley.

    Book  Google Scholar 

  • Guibal, E., Campos Gavilan, K., Bunio, P., Vincent, T., & Trochimczuk, A. (2008). Cyphos IL 101 (tetradecyl(trihexyl) phosphonium chloride) immobilized in biopolymer capsules fore Hg(II) recovery from HCl solutions. Separation Science and Technology, 43, 2406–2433. DOI: 10.1080/01496390802118970.

    Article  CAS  Google Scholar 

  • Inès, M., Almeida, G. S., Catrall, R. W., & Kolev, S. D. (2012). Recent trends in extraction and transport of metal ion using polymer inclusion membrane (PIMs). Journal of Membrane Science 415–416, 9–23. DOI: 10.1016/j.memsci.2012.06.006.

    Google Scholar 

  • Kogelnig, D., Regelsberger, A., Stojanovic, A., Jirsa, F., Krachler, R., & Keppler, B. K. (2011). A polymer inclusion membrane based on the ionic liquid trihexyl(tetradecyl)-phosphonium chloride and PVC for solid-liquid extraction of Zn(II) from hydrochloric acid solution. Monatshefte für Chemie — Chemical Monthly, 142, 769–772. DOI: 10.1007/s00706-011-0530-6.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Catrall, R. W., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. DOI: 10.1016/j.memsci.2006.03.035.

    Article  CAS  Google Scholar 

  • Onac, C., Korkmaz Alpoguz, H., Akcylen, E., & Yilmaz, M. (2013). Facilitated transport of Cr(VI) through polymer inclusion membrane system containing calix[4]arene derivative as carrier agent. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 50, 1013–1021. DOI: 10.1080/10601325.2013.792205.

    Article  CAS  Google Scholar 

  • Pośpiech, B., Walkowiak, W., & Woźniak, M. J. (2005). Application of TBP in selective removal of iron(III) in solvent extraction and transport through polymer inclusion membranes processes. Physicochemical Problems of Mineral Processing, 39, 89–98.

    Google Scholar 

  • Principe, F., & Demopoulous, G. P. (2004). Comparative study of iron(III) separation from zinc sulphate—sulphuric acid solutions using the organophosphorus extractants, OPAP and D2EHPA: Part I: Extraction. Hydrometallurgy, 74, 93–102. DOI: 10.1016/j.hydromet.2004.01.004.

    Article  CAS  Google Scholar 

  • Regel-Rosocka, M., & Szymanowski, J. (2005). Iron(II) transfer to the organic phase during zinc(II) extraction from spent pickling solutions with tributyl phosphate. Solvent Extraction and Ion Exchange, 23, 411–424. DOI: 10.1081/sei200056538.

    Article  CAS  Google Scholar 

  • Regel-Rosocka, M., & Wiśniewski, M. (2011). Selective removal of zinc(II) from spent pickling solution in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy, 110, 85–90. DOI: 10.1016/j.hydromet.2011.08.012.

    Article  CAS  Google Scholar 

  • Regel-Rosocka, M., Nowak, L., & Wiśniewski, M. (2012). Removal of zinc(II) and iron from chloride solutions with phosphonium ionic liquids. Separation and Purification Technology, 97, 158–163. DOI: 10.1016/j.seppur.2012.01.035.

    Article  CAS  Google Scholar 

  • Turanov, A. N., Karndashev, V. K., & Baulin, V. E. (2008). Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions. Russian Journal of Inorganic Chemistry, 53, 970–975. DOI: 10.1134/s0036023608060272.

    Article  Google Scholar 

  • Ugur, A., Sener, I., Hol, A., Alpoguz, H. K., & Elci, L. (2014). Facilitated transport of Zn(II) and Cd(II) ions through polymer inclusion membranes immobilized with a calix[4]resorcinarene derivative. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 51, 611–618. DOI: 10.1080/10601325.2014.924833.

    Article  CAS  Google Scholar 

  • Vázquez, M. I., Romero, V., Fontàs, C., Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physicalchemical and elastic characteristics. Journal of Membrane Science, 455, 312–319. DOI: 10.1016/j.memsci.2013.12.072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Regel-Rosocka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baczynska, M., Rzelewska, M., Regel-Rosocka, M. et al. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier. Chem. Pap. 70, 172–179 (2016). https://doi.org/10.1515/chempap-2015-0198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0198

Keywords

Navigation