Skip to main content
Log in

A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A new synthesised triphenylamine-based dye having a branched structure with one OH-ending branch able to interact with the surface hydroxyl moieties of mesoporous TiO2 is reported. Optical properties of the dye-titania hybrid material are presented and the higher efficiency of the dye on pure anatase TiO2 compared to the commercial Degussa P25, which contains a rutile phase component, is confirmed. The optical and chemical properties of the dye make it a promising candidate as a metal-free dye for DSSCs or as a host for a variety of transition or main group metal ions for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amadio, E., Bertoldini, M., Scrivanti, A., Chessa, G., Beghetto, V., Matteoli, U., Bertani, R., & Dolmella, A. (2011). Synthesis, crystal structure, solution behaviour and catalytic activity of a palladium(II)-allyl complex containing a 2-pyridyl-1,2,3-triazole bidentate ligand. Inorganica Chimica Acta, 370, 388–393. DOI: 10.1016/j.ica.2011.02.002.

    Article  CAS  Google Scholar 

  • Ardo, S., & Meyer, G. J. (2009). Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews, 38, 115–164. DOI: 10.1039/b804321n.

    Article  CAS  Google Scholar 

  • Armarego, W. L. F., & Perrin, D. D. (1996). Purification of laboratory chemicals (4th ed.). Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Grätzel, M. (1997). Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80, 3157–3171. DOI: 10.1111/j.1151-2916.1997.tb03245.x.

    Article  Google Scholar 

  • Barnard, A. S., & Curtiss, L. A. (2005). Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Letters, 5, 1261–1266. DOI: 10.1021/nl050355m.

    Article  CAS  Google Scholar 

  • Bolje, A., Urankar, D., & Košmrlj, J. (2014). Synthesis and NMR analysis of 1,4-disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. European Journal of Organic Chemistry, 36, 8167–8181. DOI: 10.1002/ejoc.201403100.

    Article  Google Scholar 

  • Brotherton, W. S., Michaels, H. A., Simmons, J. T., Clark, R. J., Dalal, N. S., & Zhu, L. (2009). Apparent copper(II)-accelerated azide-alkyne cycloaddition. Organic Letters, 11, 4954–4957. DOI: 10.1021/ol9021113.

    Article  CAS  Google Scholar 

  • Cai, S. Y., Hu, X. H., Zhang, Z. Y., Su, J. H., Li, X., Islam, A., Han, L. Y., & Tian, H. (2013). Rigid triarylamine-based efficient DSSC sensitizers with high molar extinction coefficients. Journal of Materials Chemistry A, 1, 4763–4772. DOI: 10.1039/c3ta01657a.

    Article  CAS  Google Scholar 

  • Chen, D. H., Huang, F. Z., Cheng, Y. B., & Caruso, R. A. (2009). Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 21, 2206–2210. DOI: 10.1002/adma.200802603.

    Article  CAS  Google Scholar 

  • D’Arienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., Wahba, L., & Morazzoni, F. (2011). Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: A probe to evaluate the role of crystal facets in photocatalytic processes. Journal of the American Chemical Society, 133, 17652–17661. DOI: 10.1021/ja204838s.

    Article  Google Scholar 

  • De Jesus Trindade, F., Queiruga Rey, J. F., & Brochsztain, S. (2011). Covalent attachment of 4-amino-1,8-naphthalimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Dyes and Pigments, 89, 97–104. DOI: 10.1016/j.dyepig.2010.09.009.

    Article  Google Scholar 

  • Duan, T. N., Fan, K., Fu, Y., Zhong, C., Chen, X. G., Peng, T. Y., & Qin, J. G. (2012). Triphenylamine-based organic dyes containing a 1,2,3-triazole bridge for dye-sensitized solar cells via a ‘click’ reaction. Dyes and Pigments, 94, 28–33. DOI: 10.1016/j.dyepig.2011.11.008.

    Article  CAS  Google Scholar 

  • Enzo, S., Polizzi, S., & Benedetti, A. (1985). Application of fitting techniques to the Warren-Averbach method for X-ray line broadening analysis. Zeitschrift für Kristallographie, 170, 275–287. DOI: 10.1524/zkri.1985.170.14.275.

    Article  CAS  Google Scholar 

  • Enzo, S., Fagherazzi, G., Benedetti, A., & Polizzi, S. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. Journal of Applied Crystallography, 21, 536–542. DOI: 10.1107/s0021889888006612.

    Article  Google Scholar 

  • Finnie, K. S., Cassidy, D. J., Bartlett, J. R., & Woolfrey, J. L. (2001). IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films. Langmuir, 17, 816–820. DOI: 10.1021/la0009240.

    Article  CAS  Google Scholar 

  • Ganschow, M., Wark, M., Wöhrle, D., & Schulz-Ekloff, G. (2000). Anchoring of functional dye molecules in MCM-41 by microwave-assisted hydrothermal cocondensation. Angewandte Chemie International Edition, 39, 160–163. DOI: 10.1002/(SICI)1521-3773(20000103)39:1<160∷AID-ANIE160>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  • Gómez-Romero, P., & Sanchez, C. (Eds.) (2004). Functional hybrid materials. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Grätzel, M. (2009). Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research, 42, 1788–1798. DOI: 10.1021/ar900141y.

    Article  Google Scholar 

  • Gu, X., Zhou, L., Li, Y. W., Sun, Q. A., & Jena, P. (2012). Design of new metal-free dyes for dye-sensitized solar cells: A first-principles study. Physics Letters A, 376, 2595–2599. DOI: 10.1016/j.physleta.2012.07.020.

    Article  CAS  Google Scholar 

  • Hagberg, D. P., Yum, J. H., Lee, H. J., De Angelis, F., Marinado, T., Karlson, K. M., Humphry-Baker, R., Sun, L. C., Hagfeldt, A., Grätzel, M., & Nazeeruddin, M. K. (2008). Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society, 130, 6259–6266. DOI: 10.1021/ja800066y.

    Article  CAS  Google Scholar 

  • Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110, 6595–6663. DOI: 10.1021/cr900356p.

    Article  CAS  Google Scholar 

  • Harima, Y., Fujita, T., Kano, Y., Imae, I., Komaguchi, K., Ooyama, Y., & Ohshita, J. (2013). Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit. The Journal of Physical Chemistry C, 117, 16364–16370. DOI: 10.1021/jp405835y.

    Article  CAS  Google Scholar 

  • He, J. X., Wu, W. J., Hua, J. L., Jiang, Y. H., Qu, S. Y., Li, J., Long, Y. T., & Tian, H. (2011). Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry, 21, 6054–6062. DOI: 10.1039/c0jm03811c.

    Article  CAS  Google Scholar 

  • Katono, M., Bessho, T., Meng, S., Humphry-Baker, R., Rothenberger, G., Zakeeruddin, S. M., Kaxiras, E., & Grätzel, M. (2011). D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells. Langmuir, 27, 14248–14252. DOI: 10.1021/la203104v.

    Article  CAS  Google Scholar 

  • Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004∷AID-ANIE2004>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  • Latterini, L., Nocchetti M., Aloisi, G. G., Costantino, U., & Elisei, F. (2007). Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360, 728–740. DOI: 10.1016/j.ica.2006.07.048.

    Article  CAS  Google Scholar 

  • Lázaro Martínez, J. M., Rodríguez-Castellón, E., Torres Sánchez, R. M., Denaday, L. R., Buldain, G. Y., & Campo Dall’Orto, V. (2011). XPS studies on the Cu(I,II)-polyampholyte heterogeneous catalyst: An insight into its structure and mechanism. Journal of Molecular Catalysis A: Chemical, 339, 43–51. DOI: 10.1016/j.molcata.2011.02.010.

    Article  Google Scholar 

  • Li, Z. A., Wu, W. B., Li, Q. Q., Yu, G., Xiao, L., Liu, Y. Q., Ye, C., Qin, J., & Li, Z. (2010). High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angewandte Chemie International Edition, 49, 2763–2767. DOI: 10.1002/anie.200906946.

    Article  CAS  Google Scholar 

  • Lobo-Lapidus, R. J., & Gates, B. C. (2010). Probing surface sites of TiO2: Reactions with [HRe(CO)5] and [CH3Re(CO)5]. Chemistry — A European Journal, 16, 11386–11398. DOI: 10.1002/chem.201000267.

    Article  CAS  Google Scholar 

  • Mao, J. Y., He, N. N., Ning, Z. J., Zhang, Q., Guo, F. L., Chen, L., Wu, W. J., Hua, J. L., & Tian, H. (2012). Stable dyes containing double acceptors without COOH as anchors for highly efficient dye-sensitized solar cells. Angewandte Chemie International Edition, 51, 9873–9876. DOI: 10.1002/anie.201204948.

    Article  CAS  Google Scholar 

  • Michinobu, T., Satoh, N., Cai, J. H., Li, Y. R., & Han, L. Y. (2014). Novel design of organic donor-acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. Journal of Materials Chemistry C, 2, 3367–3372. DOI: 10.1039/c3tc32165g.

    Article  CAS  Google Scholar 

  • Moretti, E., Storaro, L., Chessa, G., Talon, A., Callone, E., Mueller, K. J., Enrichi, F., & Lenarda, M. (2012). Stepwise dansyl grafting on the kaolinite interlayer surface. Journal of Colloid and Interface Science, 375, 112–117. DOI: 10.1016/j.jcis.2012.02.033.

    Article  CAS  Google Scholar 

  • Nazeeruddin, M. K., Humphry-Baker, R., Officer, D. L., Campbell, W. M., Burrell, A. K., & Grätzel, M. (2004). Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir, 20, 6514–6517. DOI: 10.1021/la0496082.

    Article  CAS  Google Scholar 

  • Ning, Z., Chen, Z., Zhang, Q., Yan, Y., Qian, S., Cao, Y., & Tian, H. (2007). Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Advanced Functional Materials, 17, 3799–3807. DOI: 10.1002/adfm.200700649.

    Article  CAS  Google Scholar 

  • Ning, Z. J., Zhang, Q., Wu, W. J., Pei, H. C., Liu, B., & Tian, H. (2008). Starburst triarylamine based dyes for efficient dyesensitized solar cells. The Journal of Organic Chemistry, 73, 3791–3797. DOI: 10.1021/jo800159t.

    Article  CAS  Google Scholar 

  • Ning, Z. J., & Tian, H. (2009). Triarylamine: a promising core unit for efficient photovoltaic materials. Chemical Communications, 2009, 5483–5495. DOI: 10.1039/b908802d.

    Article  Google Scholar 

  • Ooyama, Y., Nagano, T., Inoue, S., Imae, I., Komaguchi, K., Ohshita, J., & Harima, Y. (2011). Dye-sensitized solar cells based on donor-π-acceptor fluorescent dyes with a pyridine ring as an electron-withdrawing-injecting anchoring group. Chemistry — A European Journal, 17, 14837–14843. DOI: 10.1002/chem.201101923.

    Article  CAS  Google Scholar 

  • Parent, M., Mongin, O., Kamada, K., Katan, C., & Blanchard-Desce, M. (2005). New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. Chemical Communications, 2005, 2029–2031. DOI: 10.1039/b419491h.

    Article  Google Scholar 

  • Park, S. H., Ogino, K., & Sato, H. (2000). Synthesis and characterization of photorefractive polymers with triphenylamine unit and NLO chromophore unit on a side chain. Polymers for Advanced Technologies, 11, 349–358. DOI: 10.1002/1099-1581(200007)11:7<349∷AID-PAT978>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  • Pesek, J. J. (1990). Some new perspectives on the chemical modification of silica. In D. E. Leyden, & W. T. Collins (Eds.), Chemically modified oxide surfaces (Vol. 3, pp. 93–107). New York, NY, USA: Gordon & Breach.

    Google Scholar 

  • Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., de Coss, R., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19, 145605. DOI: 10.1088/0957-4484/19/14/145605.

    Article  CAS  Google Scholar 

  • Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599. DOI: 10.1002/1521-3773(20020715)41:14<2596∷AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  • Scotti, R., D’Arienzo, M., Testino, A., & Morazzoni, F. (2009). Photocatalytic mineralization of phenol catalyzed by pure and mixed phase hydrothermal titanium dioxide. Applied Catalysis B: Environmental, 88, 497–504. DOI: 10.1016/j.apcatb.2008.10.017.

    Article  CAS  Google Scholar 

  • Segal-Peretz, T., Jahnke, J. P., Berenson, A., Neeman, L., Oron, D., Rossini, A. J., Chmelka, B. F., & Frey, G. L. (2014). Understanding and promoting molecular interactions and charge transfer in dye-mediated hybrid photovoltaic materials. The Journal of Physical Chemistry C, 118, 25374–2539. DOI: 10.1021/jp508819w.

    Article  CAS  Google Scholar 

  • Sharifi, N., Tajabadi, F., & Taghavinia, N. (2014). Recent developments in dye-sensitized solar cells. ChemPhysChem, 15, 3902–3927. DOI: 10.1002/cphc.201402299.

    Article  CAS  Google Scholar 

  • Testino, A., Bellobono, I. R., Buscaglia, V., Canevali, C., D’Arienzo, M., Polizzi, S., Scotti, R., & Morazzoni, F. (2007). Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. Journal of the American Chemical Society, 129, 3564–3575. DOI: 10.1021/ja067050+.

    Article  CAS  Google Scholar 

  • Urankar, D., Pinter, B., Pevec, A., De Proft, F., Turel, I., & Košmrlj, J. (2010). Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorganic Chemistry, 49, 4820–4829. DOI: 10.1021/ic902354e.

    Article  CAS  Google Scholar 

  • Wang, Z. S., Huang, Y. Y., Cheng, C. H., Zheng, J., Cheng, H. M., & Tian, S. J. (2000). Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synthetic Metals, 114, 201–207. DOI: 10.1016/s0379-6779(00)00261-7.

    Article  CAS  Google Scholar 

  • Zhang, L. X., Liu, P., & Su, Z. X. (2006). Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polymer Degradation and Stability, 91, 2213–2219. DOI: 10.1016/j.polymdegradstab.2006.01.002.

    Article  CAS  Google Scholar 

  • Zhang, G. L., Bala, H. R., Cheng, Y. M., Shi, D., Lv, X. J., Yu, Q. J., & Wang, P. (2009a). High efficiency and stable dye sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chemical Communications, 2009, 2198–2200. DOI: 10.1039/b822325d.

    Article  Google Scholar 

  • Zhang, Q., Ning, Z. J., & Tian, H. (2009b). ‘Click’ synthesis of starburst triphenylamine as potential emitting material. Dyes and Pigments, 81, 80–84. DOI: 10.1016/j.dyepig.2008.09.005.

    Article  CAS  Google Scholar 

  • Zhang, M. D., Pan, H., Ju, X. H., Ji, Y. J., Qin, L., Zheng, H. G., & Zhou, X. F. (2012). Improvement of dye-sensitized solar cells’ performance through introducing suitable heterocyclic groups to triarylamine dyes. Physical Chemistry Chemical Physics, 14, 2809–2815. DOI: 10.1039/c2cp23876d.

    Article  CAS  Google Scholar 

  • Zhao, W. J., Li, D. M., He, B., Zhang, J. L., Huang, J. Z., & Zhang, L. Z. (2005). The photoluminescence of coumarin derivative encapsulated in MCM-41 and Ti-MCM-41. Dyes and Pigments, 64, 265–270. DOI: 10.1016/j.dyepig.2004.06.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Moretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, E., Aversa, M., Scrivanti, A. et al. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties. Chem. Pap. 70, 218–230 (2016). https://doi.org/10.1515/chempap-2015-0192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0192

Keywords

Navigation