Skip to main content
Log in

Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the study, a thermally activated sodium peroxydisulphate (PDS; Na2S2O8) was applied in order to disintegrate wastewater activated sludge (WAS). Chemical disintegration of WAS results in organic matter and polymer transfer from the solid phase to the liquid phase. Soluble chemical oxygen demand (SCOD) is often used to characterise the disintegration efficiency of WAS flocs and microorganisms cells. The present study was conducted in order to chemically disintegrate WAS using PDS in doses of 0.2 %, 0.4 %, 0.6 %, 0.8 % and 1.0 % activated at temperatures of 50°C, 70°C and 90°C for 30 min. The temperature rise induced the PDS to form free radicals, which resulted in an increase in SCOD, i.e. for the highest dose of PDS, the SCOD value attained 2140 mg dm−3 (almost a 15-fold increase over the WAS value). A further positive effect from using this method was a decrease in the sludge volume index (SVI) from 89.8 cm3 g−1 to 30.6 cm3 g−1. On the basis of the results obtained, it may be concluded that thermally activated PDS is suitable for disintegration and has a positive impact on WAS sedimentation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abelleira, J., Pérez-Elvira, S. I., Sánchez-Oneto, J., Portela, J. R., & Nebot, E. (2012). Advanced thermal hydrolysis of secondary sewage sludge: A novel process combining thermal hydrolysis and hydrogen peroxide addition. Resources, Conservation and Recycling, 59 52–57. DOI: 10.1016/j.resconrec.2011.03.008.

    Article  Google Scholar 

  • Ahmad, M., Teel, A. L., & Watts, R. J. (2013). Mechanism of persulfate activation by phenols. Environmental Science & Technology, 47 5864–5871. DOI: 10.1021/es400728c.

    Article  CAS  Google Scholar 

  • Block, P. A., Brown, R. A., & Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. In Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, May 24–27, 2004 (Paper 2A-05). Monterrey, Mexico: Battelle Press.

    Google Scholar 

  • Bougrier, C., Albasi, C., Delgenès, J. P., & Carrère, H. (2006). Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing: Process Intensification, 45 711–718. DOI: 10.1016/j.cep.2006.02.005.

    Article  CAS  Google Scholar 

  • Bougrier, C., Delgenès, J. P., & Carrère, H. (2008). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal, 139 236–244. DOI: 10.1016/j.cej.2007.07.099.

    Article  CAS  Google Scholar 

  • Braguglia, C. M., Gianico, A., & Mininni, G. (2011). Laboratory-scale ultrasound pre-treated digestion of sludge: heat and energy balance. Bioresource Technology, 102 7567–7573. DOI: 10.1016/j.biortech.2011.05.025.

    Article  CAS  Google Scholar 

  • Burgess, J. E., & Platschke, B. I. (2008). Hydrolytic enzymes in sewage sludge treatment: A mini-review. Water SA, 34 343–349.

    CAS  Google Scholar 

  • Cabirol, N., Barragán, E. J., Durán, A., & Noyola, A. (2003). Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment. Water Science and Technology, 48 235–240.

    CAS  Google Scholar 

  • Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183 1–15. DOI: 10.1016/j.jhazmat.2010.06.129.

    Article  Google Scholar 

  • Cloete, T. E., & Oosthuizen, D. J. (2001). The role of extracellular exopolymers in the removal of phosphorous from activated sludge. Water Research, 35 3595–3598. DOI: 10.1016/s0043-1354(01)00093-8.

    Article  CAS  Google Scholar 

  • Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2006). Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research, 79 2304–2317. DOI: 10.2175/106143007x184069.

    Article  Google Scholar 

  • Esparza-Soto, M., & Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37 2301–2310. DOI: 10.1016/s0043-1354(02)00630-9.

    Article  CAS  Google Scholar 

  • Fang, G. D., Gao, J., Dionysiou, D. D., Liu, C., & Zhou, D. M. (2013). Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 47 4605–4611. DOI: 10.1021/es400262n.

    Article  CAS  Google Scholar 

  • Gray, N. F. (2004). Biology of wastewater treatment (Vol. 4, 2nd ed.). London, UK: Imperial College Press.

    Book  Google Scholar 

  • Grübel, K., & Suschka, J. (2015). Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environmental Science and Pollution Research, 22 7258–7270. DOI: 10.1007/s11356-014-3705-y.

    Article  Google Scholar 

  • Guan, B. H., Yu, J., Fu, H. L., Guo, M. H., & Xu, X. H. (2012). Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Research, 46 425–432. DOI: 10.1016/j.watres.2011.11.014.

    Article  CAS  Google Scholar 

  • Guellil, A., Thomas, F., Block, J. C., Bersillon, J. L., & Ginestet, P. (2001). Transfer of organic matter between wastewater and activated sludge flocs. Water Research, 35 143–150. DOI: 10.1016/s0043-1354(00)00240-2.

    Article  CAS  Google Scholar 

  • Hiraoka, M., Takeda, N., Sakai, S., & Yasuda, A. (1984). Highly efficient anaerobic digestion with thermal pretreatment. Water Science and Technology, 17 529–539.

    Google Scholar 

  • Huang, K. C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49 413–420. DOI: 10.1016/s0045-6535(02)00330-2.

    Article  CAS  Google Scholar 

  • Houdková, L., Borán, J., Ucekaj, V., Elsäßer, T., & Stehlík, P. (2008). Thermal processing of sewage sludge — II. Applied Thermal Engineering, 28 2083–2088. DOI: 10.1016/j.applthermaleng.2008.04.005.

    Article  Google Scholar 

  • Jenkins, D., Richard, M. G., & Daigger, G. T. (1993). Manual on the causes and control of activated sludge bulking and foaming (2nd ed.). Fort Worth, TX, USA: Lewis Publishers.

    Google Scholar 

  • Kennedy, K. J., Thibault, G., & Droste, R. L. (2007). Microwave enhanced digestion of aerobic SBR sludge. Water SA, 33 261–270.

    CAS  Google Scholar 

  • Kjellerup, B. V., Keiding, K., & Nielsen, P. H. (2001). Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant. Water Science and Technology, 44 155–162.

    CAS  Google Scholar 

  • Latimer, W. M. (1952). Oxidation potentials (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55 1213–1223. DOI: 10.1016/j.chemosphere.2004.01.029.

    Article  CAS  Google Scholar 

  • Liang, C. J., & Guo, Y. Y. (2012). Remediation of diesel-contaminated soils using persulfate under alkaline condition. Water Air & Soil Pollution, 223 4605–4614. DOI: 10.1007/s11270-012-1221-6.

    Article  CAS  Google Scholar 

  • Liu, X., Wang, W., Gao, X. B., Zhou, Y. J., & Shen, R. J. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 32 249–255. DOI: 10.1016/j.wasman.2011.09.027.

    Article  Google Scholar 

  • Neyens, E., Baeyens, J., Weemaes, M., & De Heyder, B. (2003a). Hot acid hydrolysis as a potential treatment of thickened sewage sludge. Journal of Hazardous Materials, 98 275–293. DOI: 10.1016/s0304-3894(03)00002-5.

    Article  CAS  Google Scholar 

  • Neyens, E., Baeyens, J., & Creemers, C. (2003b). Alkaline thermal sludge hydrolysis. Journal of Hazardous Materials, 97 295–314. DOI: 10.1016/s0304-3894(02)00286-8.

    Article  CAS  Google Scholar 

  • Oncu, N. B., & Balcioglu, I. A. (2013). Microwave-assisted chemical oxidation of biological waste sludge: Simultaneous micropollutant degradation and sludge solubilization. Bioresource Technology, 146 126–134. DOI: 10.1016/j.biortech.2013.07.043.

    Article  Google Scholar 

  • Peeters, B., Vernimmen, L., & Meeusen, W. (2009). Lab protocol for a spin tube test, simulating centrifugal compaction of activated sludge. Filtration, 9 205–217.

    Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  • Romero, A., Santos, A., Vicente, F., & González, C. (2010). Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal, 162 257–265. DOI: 10.1016/j.cej.2010.05.044.

    Article  CAS  Google Scholar 

  • Sanin, F. D., Clarkson, W. W., & Vesilind, P. A. (2011). Sludge engineering: the treatment and disposal of wastewater sludges (1st ed.). Lancaster, PA, USA: DEStech Publications.

    Google Scholar 

  • Sezgin, M. (1982). Variation of sludge volume index with activated sludge characteristics. Water Research, 16 83–88. DOI: 10.1016/0043-1354(82)90056-2.

    Article  Google Scholar 

  • Siegrist, R. L., Crimi, M., & Simpkin, T. J. (2011). In situ chemical oxidation for groundwater remediation. New York, NY, USA: Springer.

    Book  Google Scholar 

  • Stasta, P., Boran, J., Bebar, L., Stehlik, P., & Oral, J. (2006). Thermal processing of sewage sludge. Applied Thermal Engineering, 26 1420–1426. DOI: 10.1016/j.applthermaleng.2005.05.030.

    Article  CAS  Google Scholar 

  • Sun, D. D., Liang, H. M., & Ma, C. (2012). Enhancement of sewage sludge anaerobic digestibility by sulfate radical pretreatment. Advanced Materials Research, 518–523, 3358–3362. DOI: 10.4028/www.scientific.net/amr.518-523.3358.

    Article  Google Scholar 

  • Wang, F., Lu, S. H., & Ji, M. (2006). Components of release liquid from ultrasonic waste activated sludge disintegration. Ultrasonics Sonochemistry, 13 334–338. DOI: 10.1016/j.ultsonch.2005.04.008.

    Article  Google Scholar 

  • Wei, C. H., Wang, W. X., Deng, Z. Y., & Wu, C. F. (2007). Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed. Journal of Environmental Sciences, 19 264–270. DOI: 10.1016/s1001-0742(07)60043-6.

    Article  CAS  Google Scholar 

  • Wett, B., Phothilangka, P., & Eladawy, A. (2010). Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Management, 30 1057–1062. DOI: 10.1016/j.wasman.2009.12.011.

    Article  CAS  Google Scholar 

  • Wilson, C. A., & Novak, J. T. (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Research, 43 4489–4498. DOI: 10.1016/j.watres.2009.07.022.

    Article  CAS  Google Scholar 

  • Yin, F. B., Wang, D. L., Li, Z. F., Ohlsen, T., Hartwig, P., & Czekalla, S. (2015). Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Bioresources Technology, 177 188–193. DOI: 10.1016/j.biortech.2014.11.091.

    Article  CAS  Google Scholar 

  • Yuan, S. H., Liao, P., & Alshawabkeh, A. N. (2014). Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environmental Science & Technology, 48 656–663. DOI: 10.1021/es404535q.

    Article  CAS  Google Scholar 

  • Zhen, G. G., Lu, X. Q., Li, Y. Y., Zhao, Y. C., Wang, B. Y., Song, Y., Chai, X. L., Niu, D. J., & Cao, X. Y. (2012a). Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation. Bioresource Technology, 119 7–14. DOI: 10.1016/j.biortech.2012.05.115.

    Article  CAS  Google Scholar 

  • Zhen, G. G., Lu, X. Q., Wang, B. Y., Zhao, Y. C., Chai, X. L., Niu, D. J., Zhao, A. H., Li, Y. Y., Song, Y., & Cao, X. Y. (2012b). Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability. Bioresource Technology, 124 29–36. DOI: 10.1016/j.biortech.2012.08.039.

    Article  CAS  Google Scholar 

  • Zhen, G. Y., Lu, X. Q., Li, Y. Y., & Zhao, Y. C. (2013). Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge. Bioresource Technology, 136 654–663. DOI: 10.1016/j.biortech.2013.03.007.

    Article  CAS  Google Scholar 

  • Zhou, L., Zheng, W., Ji, Y. F., Zhang, J. F., Zeng, C., Zhang, Y., Wang, Q., & Yang, X. (2013). Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. Journal of Hazardous Materials, 263 422–430. DOI: 10.1016/j.jhazmat.2013.09.056.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Wacławek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wacławek, S., Grübel, K., Chłąd, Z. et al. Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chem. Pap. 69, 1473–1480 (2015). https://doi.org/10.1515/chempap-2015-0169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0169

Keywords

Navigation