Skip to main content

Advertisement

Log in

Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Olivine is abundant in the Earth’s upper mantle; it has applications in catalysts to enhance their stability in structures. The olivine-type catalysts were prepared by co-precipitation and hydrothermal synthesis and tested in the auto-thermal reforming (ATR) of acetic acid (AC), a model compound from bio-oil, for hydrogen production. In the meantime, the natural olivine impregnated with Ni was also tested. Characterisations of XRD, nitrogen physisorption, temperature-programmed reduction, and SEM-EDX were used to find the structure-reactivity relationship. The results indicate that the natural olivine produced a low H2 yield close to 0.17 mole of H2 per 1 mole of AC, while the olivine impregnated with Ni produced a H2 yield of from 2.19 mole to 2.73 mole of H2 per mole of AC. The olivine catalyst prepared by hydrothermal synthesis performed better in both activity and stability: the H2 yield achieved 3.06 mole of H2 per mole of AC and remained stable, which could be attributed to the higher surface area and stability with Ni inserted in the skeleton of olivine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An, L., Dong, C. Q., Yang, Y. P., Zhang, J. J., & He, L. (2011). The influence of Ni loading on coke formation in steam reforming of acetic acid. Renewable Energy, 36, 930–935. DOI: 10.1016/j.renene.2010.08.029.

    Article  CAS  Google Scholar 

  • Atong, D., Pechyen, C., Aht-Ong, D., & Sricharoenchaikul, V. (2011). Synthetic olivine supported nickel catalysts for gasification of glycerol. Applied Clay Science, 53, 244–253. DOI: 10.1016/j.clay.2011.01.030.

    Article  CAS  Google Scholar 

  • Bernardi, M. I. B., Araújo, V. D., Ribeiro, C., Avansi, W., Longo, E., de Albuquerque, N. A., Meneghetti, S. M. P., Almeida, R. M., & Fajardo, H. V. (2014). Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−xMn x O in cellulose conversion. Chemical Papers, 68, 1213–1218. DOI: 10.2478/s11696-013-0468-8.

    Article  CAS  Google Scholar 

  • Bimbela, F., Oliva, M., Ruiz, J., García, L., & Arauzo, J. (2013). Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts. International Journal of Hydrogen Energy, 38, 14476–14487. DOI: 10.1016/j.ijhydene.2013.09.038.

    Article  CAS  Google Scholar 

  • Chaubey, R., Sahu, S., James, O. O., & Maity, S. (2013). A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443–462. DOI: 10.1016/j.rser.2013.02.019.

    Article  CAS  Google Scholar 

  • Cheah, S., Gaston, K. R., Parent, Y. O., Jarvis, M. W., Vinzant, T. B., Smith, K. M., Thornburg, N. E., Nimlos, M. R., & Magrini-Bair, K. A. (2013). Nickel cerium olivine catalyst for catalytic gasification of biomass. Applied Catalysis B: Environmental, 134–135, 34–45. DOI: 10.1016/j.apcatb.2012.12.022.

    Article  Google Scholar 

  • Cheng, F., & Dupont, V. (2013). Nickel catalyst auto-reduction during steam reforming of bio-oil model compound acetic acid. International Journal of Hydrogen Energy, 38, 15160–15172. DOI: 10.1016/j.ijhydene.2013.09.111.

    Article  CAS  Google Scholar 

  • Courson, C., Udron, L., Świerczyński, D., Petit, C., & Kiennemann, A. (2002). Hydrogen production from biomass gasification on nickel catalysts: Tests for dry reforming of methane. Catalysis Today, 76, 75–86. DOI: 10.1016/s0920-5861(02)00202-x.

    Article  CAS  Google Scholar 

  • Cristiani, C., Dotelli, G., Mariani, M., Pelosato, R., & Zampori, L. (2013). Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation. Chemical Papers, 67, 526–531. DOI: 10.2478/s11696-013-0306-z.

    Article  CAS  Google Scholar 

  • Dachs, E., Geiger, C. A., von Seckendorff, V., & Grodzicki, M. (2007). A low-temperature calorimetric study of synthetic (forsterite + fayalite) (Mg2SiO4 +Fe2SiO4) solid solutions: An analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. The Journal of Chemical Thermodynamics, 39, 906–933. DOI: 10.1016/j.jct.2006.11.009.

    Article  CAS  Google Scholar 

  • Devi, L., Craje, M., Thune, P., Ptasinski, K. J., & Janssen, F. J. J. G. (2005). Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization. Applied Catalysis A: General, 294, 68–79. DOI: 10.1016/j.apcata.2005.07.044.

    Article  CAS  Google Scholar 

  • Hu, R. R., Yan, C. F., Zheng, X. X., Liu, H., & Zhou, Z. Y. (2013). Carbon deposition on Ni/ZrO2—CeO2 catalyst during steam reforming of acetic acid. International Journal of Hydrogen Energy, 38, 6033–6038. DOI: 10.1016/j.ijhydene.2012.12.141.

    Article  CAS  Google Scholar 

  • Huang, L. H., Zhang, F. B., Chen, R. R., & Hsu, A. T. (2012). Manganese-promoted nickel/alumina catalysts for hydrogen production via auto-thermal reforming of ethanol. International Journal of Hydrogen Energy, 37, 15908–15913. DOI: 10.1016/j.ijhydene.2012.08.050.

    Article  CAS  Google Scholar 

  • Huang, L. H., Liu, Q., Chen, R. R., Chu, D. R., & Hsu, A. T. (2010). Layered double hydroxide derived Co0.3Mg2.7Al1−xFe x O4.5±δ catalysts for hydrogen production via autothermal reforming of bio-ethanol. Catalysis Communications, 12, 40–45. DOI: 10.1016/j.catcom.2010.05.019.

    Article  CAS  Google Scholar 

  • Huang, L. H., Liu, Q., Chen, R. R., & Hsu, A. T. (2011). Hydrogen production via auto-thermal reforming of bioethanol: The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts. Applied Catalysis A: General, 393, 302–308. DOI: 10.1016/j.apcata.2010.12.010.

    Article  CAS  Google Scholar 

  • Hwang, C. S., & Wang, N. C. (2004). Preparation and characteristics of ferrite catalysts for reduction of CO2. Materials Chemistry and Physics, 88, 258–263. DOI: 10.1016/j.matchemphys.2004.02.028.

    Article  CAS  Google Scholar 

  • Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., & Vasalos, I. A. (2008). Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor. Industrial & Engineering Chemistry Research, 48, 1400–1408. DOI: 10.1021/ie8013378.

    Article  Google Scholar 

  • Świerczyński, D., Libs, S., Courson, C., & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 74, 211–222. DOI: 10.1016/j.apcatb.2007.01.017.

    Article  Google Scholar 

  • Trane, R., Dahl, S., Skjøth-Rasmussen, M. S., & Jensen, A. D. (2012). Catalytic steam reforming of bio-oil. International Journal of Hydrogen Energy, 37, 6447–6472. DOI: 10.1016/j.ijhydene.2012.01.023.

    Article  CAS  Google Scholar 

  • Vagia, E. C., & Lemonidou, A. A. (2007). Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy, 32, 212–223. DOI: 10.1016/j.ijhydene.2006.08.021.

    Article  CAS  Google Scholar 

  • Virginie, M., Courson, C., Niznansky, D., Chaoui, N., & Kiennemann, A. (2010). Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental, 101, 90–100. DOI: 10.1016/j.apcatb.2010.09.011.

    Article  CAS  Google Scholar 

  • Yang, X. Q., Xu, S. P., Xu, H. L., Liu, X. D., & Liu, C. H. (2010). Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catalysis Communications, 11, 383–386. DOI: 10.1016/j.catcom.2009.11.006.

    Article  CAS  Google Scholar 

  • Zhang, R. Q., Wang, Y. C., & Brown, R. C. (2007). Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Conversion and Management, 48, 68–77. DOI: 10.1016/j.enconman.2006.05.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Duo Liu or Li-Hong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, MS., Liu, JD., Zhang, FB. et al. Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid. Chem. Pap. 69, 1166–1175 (2015). https://doi.org/10.1515/chempap-2015-0137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0137

Keywords

Navigation