Skip to main content
Log in

Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Tyrosinase from Agaricus bisporus was immobilised covalently on mesostructured siliceous foam (MCF) and three mesoporous silicas of SBA-15 type of different pore sizes, regarded as the reference, to reveal that MCF was the superior enzyme support. All the carriers were functionalised using 3-aminopropyltrimethoxysilane and the enzyme was attached covalently via glutaraldehyde or by simple adsorption and it was also cross-linked with glutaraldehyde in selected samples. The experiments indicated that only tyrosinase attached covalently was highly active and that postimmobilisation cross-linking slightly reduced its activity with no improvement in stability. MCF-bound tyrosinase was the best biocatalyst with monophenolase and diphenolase activities of 3627 U mL−1 and 53040 U mL−1 of carrier sediment, respectively. Inactivation studies at 55°C showed that MCF-bound tyrosinase was 20 times more stable than the native enzyme, whereas for typical SBA-15 it was only 12 times. A comparative study with other, non-siliceous enzyme supports indicated that aminated MCF appeared to be the carrier of choice for the covalent attachment of tyrosinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ates, S., Cortenlioglu, E., Bayraktar, E., & Mehmetoglu, U. (2007). Production of l-DOPA using Cu-alginate gel immobilized tyrosinase in batch and packed bed reactor. Enzyme and Microbial Technology, 40, 683–687. DOI: 10.1016/j.enzmictec.2006.05.031.

    Article  CAS  Google Scholar 

  • Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2012). Laccase immobilisation on mesostructured silicas. Chemical and Process Engineering, 33, 611–620. DOI: 10.2478/v10176-012-0051-9.

    CAS  Google Scholar 

  • Burton, S. G. (2003). Laccases and phenol oxidases in organic synthesis — a review. Current Organic Chemistry, 7, 1317–1331. DOI: 10.2174/1385272033486477.

    Article  CAS  Google Scholar 

  • Chaudhary, Y. S., Manna, S. K., Mazumdar, S., & Khushalani, D. (2008). Protein encapsulation into mesoporous silica hosts. Microporous and Mesoporous Materials, 109, 535–541. DOI: 10.1016/j.micromeso.2007.06.001.

    Article  CAS  Google Scholar 

  • de Faria, R. O., Rotunno Moure, V., de Almeida Amazonas, M. A. L., Krieger, N., & Mitchell, D. A. (2007). The biotechnological potential of mushroom tyrosinases. Food Technology & Biotechnology, 45, 287–294.

    Google Scholar 

  • Durán, N., Rosa, M. A., D’Annibale, A., & Gianfreda, L. (2002). Applications of laccase and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 31, 907–931. DOI: 10.1016/s0141-0229(02)00214-4.

    Article  Google Scholar 

  • Espín, J. C., Soler-Rivas, C., Cantos, E., Tomás-Barberán, F. A., & Wichers, H. J. (2001). Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. Journal of Agricultural and Food Chemistry, 49, 1187–1193. DOI: 10.1021/jf001258b.

    Article  Google Scholar 

  • Franssen, M. C. R., Steunenberg, P., Scott, E. L., Zuilhof, H., & Sanders, J. P. M. (2013). Immobilised enzymes in biorenewables production. Chemical Society Reviews, 42, 6491–6533. DOI: 10.1039/c3cs00004d.

    Article  CAS  Google Scholar 

  • Frąckowiak-Wojtasek, B., Gąsowska-Bajger, B., Mazurek, M., Raniszewska, A., Logghe, M., Smolarczyk, R., Cichoń, T., Szala, S., & Wojtasek, H. (2014). Synthesis and analysis of activity of potential anti-melanoma prodrug with a hydrazine linker. European Journal of Medicinal Chemistry, 71, 98–104. DOI: 10.1016/j.ejmech.2013.10.080.

    Article  Google Scholar 

  • García-Molina, F., Muñoz, J. L., García-Ruíz, P. A., Rodríguez López, J. N., García-Cánovas, F., Tudela, J., & Varón, R. (2007). A further step in the kinetic characterization of the tyrosinase enzymatic system. Journal of Mathematical Chemistry, 41, 393–406. DOI: 10.1007/s10910-006-9082-0.

    Article  Google Scholar 

  • Gąsowska, B., Kafarski, P., & Wojtasek, H. (2004). Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols. Biochimica et Biophysica Acta, 1673, 170–177. DOI: 10.1016/j.bbagen.2004.04.013.

    Article  Google Scholar 

  • Gouzi, H., & Benmansour, A. (2007). Partial purification and characterization of polyphenol oxidase extracted from Agaricus bisporus (J.E. Lange) Imbach. International Journal of Chemical Reactor Engineering, 5(1). DOI: 10.2202/1542-6580.1445.

  • Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous silicates. Angewandte Chemie International Edition, 47, 8582–8594. DOI: 10.1002/anie.200705238.

    Article  CAS  Google Scholar 

  • Holaouli, S., Asther, M., Sigoillot, J. C., Hamdi, M., & Lomascolo, A. (2006). Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100, 219–232. DOI: 10.1111/j.1365-2672.2006.02866.x.

    Article  Google Scholar 

  • Ikehata, K., & Nicelli, J. A. (2000). Characterization of tyrosinase for the treatment of aqueous phenols. Bioresource Technology, 74, 191–199. DOI: 10.1016/s0960-8524(00)00025-0.

    Article  CAS  Google Scholar 

  • Jarzębski, A. B., Szymańska, K., Bryjak, J., & Mrowiec-Białoń, J. (2007). Covalent immobilization of trypsin on to siliceous mesostructured cellular foams to obtain effective biocatalysts. Catalysis Today, 124, 2–10. DOI: 10.1016/j.cattod.2007.03.023.

    Article  Google Scholar 

  • Kampmann, M., Boll, S., Kossuch, J., Bielecki, J., Uhl, S., Kleiner, B., & Wichmann, R. (2014). Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A. Water Resource, 57, 295–303. DOI: 10.1016/j.watres.2014.03.054.

    CAS  Google Scholar 

  • Karim, M. N., Lee, J. E., & Lee, H. J. (2014). Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Biosensors & Bioelectronics, 61, 147–151. DOI: 10.1016/j.bios.2014.05.011.

    Article  CAS  Google Scholar 

  • Labus, K., Turek, A., Liesiene, J., & Bryjak, J. (2011). Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochemical Engineering Journal, 56, 232–240. DOI: 10.1016/j.bej.2011.07.003.

    Article  CAS  Google Scholar 

  • Lei, C. H., Shin, Y. S., Magnusom, J. K., Fryxell, G., Lasuje, L. L., Elliott, D. C., Liu, J., & Akerman, J. (2006). Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 17, 5531–5538. DOI: 10.1088/0957-4484/17/22/001.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Min, K. S., Ryu, J. H., & Yoo, Y. J. (2010). Mediator-free glucose/O2 biofuel cell based on a 3-dimenional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnology & Bioprocess Engineering, 15, 371–375. DOI: 10.1007/s12257-009-3034-z.

    Article  CAS  Google Scholar 

  • Morales, M. D., Morante, S., Escarpa, A., González, M. C., Reviejo, A. J., & Pingarrón, J. M. (2002). Design of a composite amperometric enzyme electrode for the control of benzoic acid content in food. Talanta, 57, 1189–1198. DOI: 10.1016/s0039-9140(02)00236-9.

    Article  CAS  Google Scholar 

  • Mrowiec-Białoń, J. (2006). Determination of hydroxyls density in the silica mesostructured cellular foams by thermogravimetry. Thermochimica Acta, 443, 49–53. DOI: 10.1016/j.tca.2005.12.014.

    Article  Google Scholar 

  • Pierre, A. C. (2004). The sol-gel encapsulation of enzymes. Biocatalysis & Biotransformation, 22, 145–170. DOI: 10.1080/10242420412331283314.

    Article  CAS  Google Scholar 

  • Ren, L. W., Jia, H. H., Yu, M., Shen, W. Z., Zhou, H., & Wei, P. (2013). Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases. Biotechnology & Bioprocess Engineering, 18, 888–896. DOI: 10.1007/s12257-013-0044-7.

    Article  CAS  Google Scholar 

  • Rekuć, A., Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2009). Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity. Process Biochemistry, 44, 191–198. DOI: 10.1016/j.procbio.2008.10.007.

    Article  Google Scholar 

  • Seo, S. Y., Sharma, V. K., & Sharma, N. (2003). Mushroom tyrosinase: Recent prospects. Journal of Agricultural & Food Chemistry, 51, 2837–2853. DOI: 10.1021/jf020826f.

    Article  CAS  Google Scholar 

  • Sigolaeva, L. V., Gladyr, S. Y., Gelissen, A. P., Mergel, O., Pergushov, D. V., Kurochkin, I. N., Plamper, F. A., & Richtering, W. (2014). Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules, 15, 3735–3745. DOI: 10.1021/bm5010349.

    Article  CAS  Google Scholar 

  • Szymańska, K., Bryjak, J., & Jarzębski, A. B. (2009). Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Topics in Catalysis, 52, 1030–1036. DOI: 10.1007/s11244-009-9261-x.

    Article  Google Scholar 

  • Tembe, S., Karve, M., Inamdar, S., Haram, S., Melo, J., & D’Souza, S. F. (2006). Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Analytical Biochemistry, 349, 72–77. DOI: 10.1016/j.ab.2005.11.016.

    Article  CAS  Google Scholar 

  • Thalmann, C. R., & Lötzbeyer, T. (2002). Enzymatic cross-linking of proteins with tyrosinase. European Food Research & Technology, 214, 276–281. DOI: 10.1007/s00217-001-0455-0.

    Article  CAS  Google Scholar 

  • Wang, K. H., Lin, R. D., Hsu, F. L., Huang, Y. H., Chang, H. C., Huang, C. Y., & Lee, M. H. (2006). Cosmetic applications of selected traditional Chinese herbal medicines. Journal of Ethnopharmacology, 106, 353–359. DOI: 10.1016/j.jep.2006.01.010.

    Article  CAS  Google Scholar 

  • Xu, D. Y., Yang, Y., & Yang, Z. (2011). Activity and stability of cross-linked tyrosinase aggregates in aqueous and non-aqueous media. Journal of Biotechnology, 152, 30–36. DOI: 10.1016/j.jbiotec.2011.01.014.

    Article  CAS  Google Scholar 

  • Xu, D. Y., & Yang, Z. (2013). Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere, 92, 391–398. DOI: 10.1016/j.chemosphere.2012.12.076.

    Article  CAS  Google Scholar 

  • Zhao, D. G., Huo, Q. S., Feng, J. L., Chmelka, B. F., & Stucky, G. D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 6024–6036. DOI: 10.1021/ja974025i.

    Article  CAS  Google Scholar 

  • Zynek, K., Bryjak, J., & Polakovič, M. (2010). Effect of separation on thermal stability of tyrosinase from Agaricus bisporus. Journal of Molecular Catalysis B: Enzymatic, 66, 172–176. DOI: 10.1016/j.molcatb.2010.05.003.

    Article  CAS  Google Scholar 

  • Zynek, K., Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2011). Screening of porous and cellular materials for covalent immobilization of Agaricus bisporus tyrosinase. Biotechnology and Bioprocess Engineering, 16, 180–189. DOI: 10.1007/s12257-010-0011-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Bryjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labus, K., Szymańska, K., Bryjak, J. et al. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts. Chem. Pap. 69, 1058–1066 (2015). https://doi.org/10.1515/chempap-2015-0115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0115

Keywords

Navigation