Skip to main content
Log in

Morphology, structure, and photoactivity of two types of graphene oxide-TiO2 composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two types of graphene oxide-TiO2 composites were prepared: one by including graphene oxide flakes in the TiO2 sol, followed by thermal treatment (GI composite) at 300°C, and the second by including graphene oxide flakes in the calcined (at 500°C) TiO2 xerogel (GII composite). The composites were characterized by SEM, TEM-EDS, TEM-SADP, STEM-HAADF, HRTEM coupled with FT, XRD, and XPS. Photocatalysis results were fitted to different kinetic models (pseudo-first and pseudo-second kinetics, intraparticle Weber-Morris diffusion, film diffusion, and external mass transfer). The results showed that by introducing graphene oxide flakes in the TiO2 sol, followed by thermal treatment at 300°C (GI composite), an efficient graphene oxide-TiO2 catalyst with high specific surface area, heterogeneity, and many graphitized areas can be obtained. Complete crystallization of the composite is not the key issue for the best photoactivity achievement. The rate limiting step in the photocatalytic process is the photooxidation of SA molecules on the TiO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansón-Casaos, A., Tacchini, I., Unzue, A., & Martínez, M. T. (2013) Combined modification of a TiO2 photocatalyst with two different carbon forms. Applied Surface Science, 270, 675–684.DOI: 10.1016/j.apsusc.2013.01.120.

    Article  Google Scholar 

  • Apiratikul, R., & Pavasant, P. (2008) Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chemical Engineering Journal, 144, 245–258.DOI: 10.1016/j.cej.2008.01.038.

    Article  CAS  Google Scholar 

  • Baia, L., Diamandescu, L., Barbu-Tudoran, L., Peter, A., Melinte, G., Danciu, V., & Baia, M. (2011) Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles. Journal of Alloys and Compounds, 509, 2672–2678.DOI: 10.1016/j.jallcom.2010.11.154.

    Article  CAS  Google Scholar 

  • Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008) Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.DOI: 10.1021/nl0731872.

    Article  CAS  Google Scholar 

  • Bennett, S. W., & Keller, A. A. (2011) Comparative photoactivity of CeO2, γ-Fe2O3, TiO2 and ZnO in various aqueous systems. Applied Catalysis B: Environmental, 102, 600–607.DOI: 10.1016/j.apcatb.2010.12.045.

    Article  CAS  Google Scholar 

  • Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, J., & Stormer, H. L. (2008) Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351–355.DOI: 10.1016/j.ssc.2008.02.024.

    Article  CAS  Google Scholar 

  • Brinker, C. J., & Scherrer, G. W. (1990) Sol-gel science (chapter 6, pp. 23). San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Chang, B. Y. S., Huang, N.M., An’amt, M.N., Marlinda, A.R., Norazriena, Y., Muhamad, M. R., Harrison, I., Lim, H. N., & Chia, C. H. (2012) Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. International Journal of Nanomedicine, 7, 3379–3387.DOI: 10.2147/ijn.s28189.

    CAS  Google Scholar 

  • Choi, Y. S., Umebayashi, T., & Yoshikawa, M. (2004) Fabrication and characterization of C-doped anatase TiO2 photo-catalysts. Journal of Materials Science, 39, 1837–1839.DOI: 10.1023/b:jmsc.0000016198.73153.31.

    Article  CAS  Google Scholar 

  • Cong, Y., Li, X.K., Qin, Y., Dong, Z. J., Yuan, G. M., Cui, Z. W., & Lai, X. J. (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Applied Catalysis B: Environmental, 107, 128–134.DOI: 10.1016/j.apcatb.2011.07.005.

    Article  CAS  Google Scholar 

  • Cohen-Tanugi, D. H. (2012) Nanoporous graphene as a desalination membrane: A computational study. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. http://hdl.handle.net/1721.1/76129

    Google Scholar 

  • Gao, P., & Sun, D. D. (2014) Hierarchical sulfonated graphene oxide-TiO2 composites for highly efficient hydrogen production with a wide pH range. Applied Catalysis B: Environmental, 147, 888–896.DOI: 10.1016/j.apcatb.2013.10.025.

    Article  CAS  Google Scholar 

  • Jastrzębska, A. M., Kurtycz, P., & Olszyna, A. R. (2012) Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14, 1320–1328.DOI: 10.1007/s11051-012-1320-8.

    Article  Google Scholar 

  • Jastrzębska, A. M., Olszyna, A. R., Jureczko J., & Kunicki, A. (2014) New reduced graphene oxide/alumina (RGO/Al2O3) nanocomposite: Innovative method of synthesis and characterization. International Journal of Applied Ceramic Technology, in press. DOI: 10.1111/ijac.12183.

  • Jiang, G. D., Lin, Z. F., Chen, C., Zhu, L. H., Chang, Q., Wang, N., Wei, W., & Tang, H. Q. (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon, 49, 2693–2071.DOI: 10.1016/j.carbon.2011.02.059.

    Article  CAS  Google Scholar 

  • Kądzioła, K., Piwoński, I., Kisielewska, A., Szczukocki, D., Krawczyk, B., & Sielski, J. (2014) The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods — comparative studies. Applied Surface Science, 288, 503–512.DOI: 10.1016/j.apsusc.2013.10.061.

    Article  Google Scholar 

  • Khalifa, Z. S. (2014) Electronic structure changes of TiO2 thin films due to electrochromism. Solar Energy Materials and Solar Cells, 124, 186–191.DOI: 10.1016/j.solmat.2014.02.005.

    Article  CAS  Google Scholar 

  • Krýsa, J., Paušová, Š., Zlámal, M., & Mills, A. (2012) Photoactivity assessment of TiO2 thin films using Acid Orange 7 and 4-chlorophenol as model compounds. Part I: Key dependencies. Journal of Photochemistry and Photobiology A: Chemistry, 250, 66–71.DOI: 10.1016/j.jphotochem.2012.09.009.

    Article  Google Scholar 

  • Lee, C. G., Wei, X. D., Kysar, J. W., & Hone, J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.DOI: 10.1126/science.1157996.

    Article  CAS  Google Scholar 

  • Lee, E. W., Hong, J. Y., Kang, H. Y., & Jang, J. S. (2012) Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. Journal of Hazardous Materials, 219–220, 13–18.DOI: 10.1016/j.jhazmat.2011.12.033.

    Article  Google Scholar 

  • Li, X. L., Peng, Q., Yi, J. X., Wang, X., & Li, Y. D. (2006) Near monodisperse TiO2 nanoparticles and nanorods. Chemistry — A European Journal, 12, 2383–2391.DOI: 10.1002/chem.200500893.

    Article  CAS  Google Scholar 

  • Liu, H., He, Y. H., & Liang, X. (2013a) Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. Journal of Materials Research, 29, 98–106.DOI: 10.1557/jmr.2013.233.

    Article  Google Scholar 

  • Liu, L., Bai, H. W., Liu, J. C., & Sun, D. D. (2013b) Multi-functional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials, 261, 214–223.DOI: 10.1016/j.jhazmat.2013.07.034.

    Article  CAS  Google Scholar 

  • Mihaly Cozmuta, L., Mihaly Cozmuta, A., Peter, A., Nicula, C., Nsimba, E. B., & Tutu, H. (2012) The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. Water SA, 38, 269–278.DOI: 10.4314/wsa.v38i2.13.

    CAS  Google Scholar 

  • Min, Y. L., Zhang, K., Zhao, W., Zheng, F. C., Chen, Y. C., & Zhang, Y. C. (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal, 193–194, 203–210.DOI: 10.1016/j.cej.2012.04.047.

    Article  Google Scholar 

  • Neppolian, B., Bruno, A., Bianchi, C. L., & Ashokkumar, M. (2012) Graphene oxide based Pt-TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrasonics Sonochemistry, 19, 9–15.DOI: 10.1016/j.ultsonch.2011.05.018.

    Article  CAS  Google Scholar 

  • Padervand, M., Tasviri, M., & Gholami, M. R. (2011) Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chemical Papers, 65, 280–288.DOI: 10.2478/s11696-011-0013-6.

    Article  CAS  Google Scholar 

  • Park, S. J., & Ruoff, R. S. (2009) Chemical methods for the production ofgraphenes. Nature Nanotechnology, 4, 217–214.DOI: 10.1038/nnano.2009.58.

    Article  CAS  Google Scholar 

  • Peter, A., Popescu, I. C., Indrea, E., Marginean, P., & Danciu, V. (2007) The influence of the heat treatment on the photoactivity of the TiO2-SiO2 aerogels. Studia Universitatis Babes-Bolyai, Chemia, 52 (3) 105–111.

    CAS  Google Scholar 

  • Peter, A., Baia, L., Baia, M., Indrea, E., Toderas, F., Danciu, V., Cosoveanu, V., & Diamandescu, L. (2010) Porous Au-TiO2 aerogels nanoarchitectures for photodegradation processes. Journal of Optoelectronics and Advanced Materials, 12, 1071–1077.

    CAS  Google Scholar 

  • Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Barbu Tudoran, L., Vulpoi, A., & Baia, L. (2014) Photocatalytic efficiency of zeolite-based TiO2 composites for reduction of Cu (II): Kinetic models. International Journal of Applied Ceramic Technology, 11, 568–581.DOI: 10.1111/ijac.12046.

    Article  CAS  Google Scholar 

  • Shi, M., Shen, J. F., Ma, H. W., Li, Z. Q., Lu, X., Li, N., & Ye, M. X. (2012) Preparation of graphene-TiO2composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids and Surface A: Physicochemical Engineering Aspects, 405, 30–37.DOI: 10.1016/j.colsurfa.2012.04.031.

    Article  CAS  Google Scholar 

  • Song, P., Zhang, X. Y., Sun, M. X., Cui, X. L., & Lin, Y. H. (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale, 2012, 1800–1804.DOI: 10.1039/c2nr11938b.

    Article  Google Scholar 

  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Ji, Y. Y., Wu, Y., Nguyen, S. B. T., & Ruoff, R. S. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565.DOI: 10.1016/j.carbon.2007.02.034.

    Article  CAS  Google Scholar 

  • Tomkiewicz, M., (2000) Scaling properties in photocatalysis. Catalysis Today, 58, 115–123.DOI: 10.1016/s0920-5861(00)00246-7.

    Article  CAS  Google Scholar 

  • Wang, H., Quan, X., Yu, H. T., & Chen, S. (2008) Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon, 46, 1126–1132.DOI: 10.1016/j.carbon.2008.04.016.

    Article  CAS  Google Scholar 

  • Wang, F., & Zhang, K. (2011) Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 345, 101–107.DOI: 10.1016/j.molcata.2011.05.026.

    Article  CAS  Google Scholar 

  • Xu, C. K., Killmeyer, R., Gray, M. L., & Khan, S. U. M. (2006) Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting. Electrochemical Communications, 8, 1650–1654.DOI: 10.1016/j.elecom.2006.07.018.

    Article  CAS  Google Scholar 

  • Xu, Y. J., Zhuang, Y. B., & Fu, X. Z. (2010) New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. The Journal of Physical Chemistry C, 114, 2669–2676.DOI: 10.1021/jp909855p.

    Article  CAS  Google Scholar 

  • Yang, J. K., Zhang, X. T., Li, B., Liu, H., Sun, P. P., Wang, C. H., Wang, L. L., & Liu, Y. C. (2014) Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 584, 180–184.DOI: 10.1016/j.jallcom.2013.08.203.

    Article  CAS  Google Scholar 

  • Zhang, Q., He, Y. Q., Chen, X. G., Hu, D. H., Li, L. J., Yin, T., & Ji, L. L. (2011) Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chinese Science Bulletin, 56, 331–339.DOI: 10.1007/s11434-010-3111-x.

    Article  CAS  Google Scholar 

  • Zhao, D. L., Sheng, G. D., Chen, C. L., & Wang, X. K. (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Applied Catalysis B: Environmental, 111–112, 303–308.DOI: 10.1016/j.apcatb.2011.10.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A. et al. Morphology, structure, and photoactivity of two types of graphene oxide-TiO2 composites. Chem. Pap. 69, 839–855 (2015). https://doi.org/10.1515/chempap-2015-0088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0088

Keywords

Navigation