Skip to main content
Log in

Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid-liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L−1 and 0.02 µg L−1 for As(III) and 0.15–8.50 µg L−1 and 0.03 µg L−1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, R., & Stoeppler, M. (1986) Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry The Analyst, 111, 1371–1374.DOI: 10.1039/an9861101371.

    Article  CAS  Google Scholar 

  • Bagheri, H., & Gholami, A. (2001) Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 55, 1141–1150.DOI: 10.1016/s0039-9140(01)00546-x.

    Article  CAS  Google Scholar 

  • Campillo, N., Viñas, P., López-García, I., & Hernández-Córdoba, M. (2000) Determination of arsenic in biological fluids by electrothermal atomic absorption spectrometry. The Analyst, 125, 313–316.DOI: 10.1039/a907596h.

    Article  CAS  Google Scholar 

  • Capelo, J. L., Maduro, C., & Mota, A. M. (2004) Advanced oxidation processes for degradation of organomercurials: Determination of inorganic and total mercury in urine by FI-CV-AAS. Journal of Analytical Atomic Spectrometry, 19, 414–416.DOI: 10.1039/b314905f.

    Article  CAS  Google Scholar 

  • Chen, Y. C., Amarasiriwardena, C. J., Hsueh, Y. M., & Christiani, D. C. (2002) Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiology Biomarkers & Prevention, 11, 1427–1433.

    CAS  Google Scholar 

  • Clarkson, T. W., Magos, L., & Myers, G. J. (2003) Human exposure to mercury: The three modern dilemmas. The Journal of Trace Elements in Experimental Medicine, 16, 321–343.DOI: 10.1002/jtra.10050.

    Article  CAS  Google Scholar 

  • Dadfarnia, S., Haji Shabani, A. M., Shirani Bidabadi, M., & Jafari, A. A. (2010) A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest. Journal of Hazardous Materials, 173, 534–538.DOI: 10.1016/j.jhazmat.2009.08.118.

    Article  CAS  Google Scholar 

  • Daye, M., Ouddane, B., Halwani, J., & Hamzeh, M. (2013) Solid phase extraction of inorganic mercury using 5-phenyl-azo-8-hydroxyquinoline and determination by cold vapor atomic fluorescence spectroscopy in natural water samples. The Scientific World Journal, 2013, 134565. DOI: 10.1155/2013/134565.

    Article  Google Scholar 

  • Diaz-Bone, R. A., Hollmann, M., Wuerfel, O., & Pieper, D. (2009) Analysis of volatile arsenic compounds formed by intestinal microorganisms: Rapid identification of new metabolic products by use of simultaneous EI-MS and ICP-MS detection after gas chromatographic separation. Journal of Analytical Atomic Spectrometry, 24, 808–814.DOI: 10.1039/b822968f.

    Article  CAS  Google Scholar 

  • Didi, M. A., Medjahed, B., & Benaouda, W. (2013) Adsorption by liquid-liquid extraction of Hg(II) from aqueous solutions using the 2-butyl-imidazolium di-(2-ethylhexyl) phosphate as ionic liquid. American Journal of Analytical Chemistry, 4, 40–47.DOI: 10.4236/ajac.2013.47a006.

    Article  CAS  Google Scholar 

  • Dugo, G., La Pera, L., Lo Turco, V., & Di Bella, G. (2005) Speciation of inorganic arsenic in alimentary and environmental aqueous samples by using derivative anodic stripping chronopotentiometry (dASCP). Chemosphere, 61, 1093–1101.DOI: 10.1016/j.chemosphere.2005.03.049.

    Article  CAS  Google Scholar 

  • Faniband, M., Lindh, C. H., & Jönsson, B. (2014) Human biological monitoring of suspected endocrine-disrupting compounds. Asian Journal of Andrology, 16, 5–16.DOI: 10.4103/1008-682x.122197.

    Article  Google Scholar 

  • Gallignani, M., Bahsas, H., Brunetto, M. R., Burguera, M., Burguera, J. L., & Petit de Peña, Y. (1998) A time-based flow injection-cold vapor-atomic absorption spectrometry system with on-line microwave sample pre-treatment for the determination of inorganic and total mercury in urine. Analytica Chimica Acta, 369, 57–67.DOI: 10.1016/s0003-2670(98)00217-7.

    Article  CAS  Google Scholar 

  • Gao, Y., Shi, Z. M., Long, Z., Wu, P., Zheng, C. B., & Hou, X. D. (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 103, 1–14.DOI: 10.1016/j.microc.2012.02.001.

    Article  CAS  Google Scholar 

  • Hineman, A. (2012) Determination of as, se and hg in waters by hydride generation/cold vapor atomic absorption spectroscopy. Ontario, Canada: PerkinElmer. Retrieved October 2014 from http://www.perkinelmer.com/cmsresources/images/44-130442app_pinaacle-toxicmetalsinwaterbyhg-cvaa.pdf

    Google Scholar 

  • Hughes, M. F. (2002) Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.DOI: 10.1016/s0378-4274(02)00084-x.

    Article  CAS  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011) Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123, 305–332.DOI: 10.1093/toxsci/kfr184.

    Article  CAS  Google Scholar 

  • Jackson, B. P., & Bertsch, P. M. (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environmental Science & Technology, 35, 4868–4873.DOI: 10.1021/es0107172.

    Article  CAS  Google Scholar 

  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011) Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95–107.DOI: 10.1002/jat.1649.

    CAS  Google Scholar 

  • Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006) Human health effects from chronic arsenic poisoning — a review. Journal of Environmental Science and Health, Part A, 41, 2399–2428.DOI: 10.1080/10934520600873571.

    Article  CAS  Google Scholar 

  • Khatoon-Abadi, A., Sheikh Hoseini, A., & Khalili, B. (2008) Effect of mercury on the human health and environment: An overview. International Journal of Food Safety, Nutrition and Public Health, 1, 33–50.DOI: 10.1504/ijfs-nph.2008.018854.

    Article  Google Scholar 

  • Kim, B. G., Jo, E. M., Kim, G. Y., Kim, D. S., Kim, Y. M., Kim, R. B., Suh, B. S., & Hong, Y. S. (2012) Analysis of methylmercury concentration in the blood of Koreans by using cold vapor atomic fluorescence spectrophotometry. Annals of Laboratory Medicine, 32, 31–37.DOI: 10.3343/alm.2012.32.1.31.

    Article  Google Scholar 

  • Koh, J. H., Kwon, Y. S., & Pak, Y. N. (2005) Separation and sensitive determination of arsenic species (As3+/As5+) using the yeast-immobilized column and hydride generation in ICP-AES. Microchemical Journal, 80, 195–199.DOI: 10.1016/j.microc.2004.07.011.

    Article  CAS  Google Scholar 

  • Lepp, N. (2008) Biological monitoring: Theory and applications. Journal of Environmental Quality, 37, 1997. DOI: 10.2134/jeq2008.0012br.

    Article  CAS  Google Scholar 

  • Li, Y. F., Chen, C.Y., Li, B., Wang, Q., Wang, J.X., Gao, Y. X., Zhao, Y. L., & Chai, Z. F. (2007) Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 925–930.DOI: 10.1039/b703310a.

    Article  CAS  Google Scholar 

  • Liang, P., & Sang, H. B. (2008) Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 380, 21–25.DOI: 10.1016/j.ab.2008.05.008.

    Article  CAS  Google Scholar 

  • Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Zhou, Q. X., & Hu, J. T. (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry, 75, 5870–5876.DOI: 10.1021/ac034506m.

    Article  CAS  Google Scholar 

  • Martinis, E. M., Olsina, R. A., Altamirano, J. C., & Wuilloud, R. G. (2008) Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 628, 41–48.DOI: 10.1016/j.aca.2008.09.001.

    Article  CAS  Google Scholar 

  • Niemelä, M., Perämäki, P., & Piispanen, J. (2003) Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 375, 673–678.DOI: 10.1007/s00216-003-1776-6.

    Article  Google Scholar 

  • Perna, L., LaCroix-Fralish, A., & Stürup, S. (2005) Determination of inorganic mercury and methylmercury in zooplankton and fish samples by speciated isotopic dilution GC-ICP-MS after alkaline digestion. Journal of Analytical Atomic Spectrometry, 20, 236–238.DOI: 10.1039/b410545a.

    Article  CAS  Google Scholar 

  • Pistón, M., Silva, J., Pérez-Zambra, R., Dol, I., & Knochen, M. (2012) Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS. Environmental Geochemistry and Health, 34, 273–278.DOI: 10.1007/s10653-011-9436-9.

    Article  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.

    Article  CAS  Google Scholar 

  • Ritsema, R., & van Heerde, E. (1997) Determination of total arsenic in urine by hydride AAS after UV-digestion. Fresenius’ Journal of Analytical Chemistry, 358, 838–843.DOI: 10.1007/s002160050519.

    Article  CAS  Google Scholar 

  • Rivas, R. E., López-García, I., & Hernández-Córdoba, M. (2009) Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 329–333.DOI: 10.1016/j.sab.2009.03.007.

    Article  Google Scholar 

  • Rodrigues, J. L., Alvarez, C. R., Fariñas, N. R., Nevado, J. J. B., Barbosa, F., Jr., & Martín-Doimeadios, R. C. R. (2011) Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure. Journal of Analytical Atomic Spectrometry, 26, 436–442.DOI: 10.1039/c004931j.

    Article  CAS  Google Scholar 

  • Salaün, P., Planer-Friedrich, B., & van den Berg, C. M. C. (2007) Inorganic arsenic speciation in water and sea-water by anodic stripping voltammetry with a gold microelectrode. Analytica Chimica Acta, 585, 312–322.DOI: 10.1016/j.aca.2006.12.048.

    Article  Google Scholar 

  • Sarafraz-Yazdi, A., & Amiri, A. (2010) Liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 29, 1–14.DOI: 10.1016/j.trac.2009.10.003.

    Article  CAS  Google Scholar 

  • Schober, S. E., Sinks, T. H., Jones, R. L., Bolger, P. M., McDowell, M., Osterloh, J., Garrett, E. S., Canady, R. A., Dillon, C. F., & Sun, Y. (2003) Blood mercury levels in US children and women of childbearing age 1999–2000. Jama, 289, 1667–1674.DOI: 10.1001/jama.289.13.1667.

    Article  CAS  Google Scholar 

  • Senn, E. P. (1997) Controlling metallic mercury exposure in the workplace: A guide for employers. Trenton, NJ, USA: Diane.

    Google Scholar 

  • Serafimovski, I., Karadjova, I. B., Stafilov, T., & Tsalev, D. L. (2006) Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry. Microchemical Journal, 83, 55–60.DOI: 10.1016/j.microc.2006.01.021.

    Article  CAS  Google Scholar 

  • Shemirani, F., Baghdadi, M., & Ramezani, M. (2005) Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta, 65, 882–887.DOI: 10.1016/j.talanta.2004.08.009.

    Article  CAS  Google Scholar 

  • Shirkhanloo, H., Rouhollahi, A., & Mousavi, H. Z. (2011) Ultra-trace arsenic determination in urine and whole blood samples by flow injection-hydride generation atomic absorption spectrometry after preconcentration and speciation based on dispersive liquid-liquid microextraction. Bulletin of the Korean Chemical Society, 32, 3923–3927.DOI: 10.5012/bkcs.2011.32.11.3923.

    Article  CAS  Google Scholar 

  • Sounderajan, S., Udas, A. C., & Venkataramani, B. (2007) Characterization of arsenic(V) and arsenic(III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy. Journal of Hazardous Materials, 149, 238–242.DOI: 10.1016/j.jhazmat.2007.07.035.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003) Invited reviews: Carcinogenic and systemic health effects associated with arsenic exposure — a critical review. Toxicologic Pathology, 31, 575–588.DOI: 10.1080/01926230390242007.

    CAS  Google Scholar 

  • Torres, D. P., Borges, D. L. G., Frescura, V. L. A., & Curtius, A. J. (2009) A simple and fast approach for the determination of inorganic and total mercury in aqueous slurries of biological samples using cold vapor atomic absorption spectrometry and in situ oxidation. Journal of Analytical Atomic Spectrometry, 24, 1118–1122.DOI: 10.1039/b816622f.

    Article  CAS  Google Scholar 

  • Tsoi, Y. K., Tam, S., & Leung, K. S. Y. (2010) Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase microextraction coupled to LC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25, 1758–1762.DOI: 10.1039/c0ja00024h.

    Article  CAS  Google Scholar 

  • Wang, M., Feng, W. Y., Shi, J. W., Zhang, F., Wang, B., Zhu, M. T., Li, B., Zhao, Y. L., & Chai, Z. F. (2007) Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta, 71, 2034–2039.DOI: 10.1016/j.talanta.2006.09.012.

    Article  CAS  Google Scholar 

  • Yoshimura, Y., Endo, Y., Shimoda, Y., Yamanaka, K., & Endo, G. (2011) Acute arsine poisoning confirmed by speciation analysis of arsenic compounds in the plasma and urine by HPLC-ICP-MS. Journal of Occupational Health, 53, 45–49.DOI: 10.1539/joh.L10108.

    Article  Google Scholar 

  • Yoshizawa, K., Rimm, E. B., Morris, J. S., Spate, V. L., Hsieh, C. C., Spiegelman, D., Stampfer, M. J., & Willett, W. C. (2002) Mercury and the risk of coronary heart disease in men. New England Journal of Medicine, 347, 1755–1760.DOI: 10.1056/nejmoa021437.

    Article  CAS  Google Scholar 

  • Zhang, L., Morita, Y., Sakuragawa, A., & Isozaki, A. (2007) Inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta, 72, 723–729.DOI: 10.1016/j.talanta.2006.12.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Zavvar Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirkhanloo, H., Khaligh, A., Mousavi, H.Z. et al. Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid-liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy. Chem. Pap. 69, 779–790 (2015). https://doi.org/10.1515/chempap-2015-0086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0086

Keywords

Navigation