Skip to main content
Log in

Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(l-proline) catalyst

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The Rh(nbd)(l-proline) (nbd = 2,5-norbornadiene) catalyst was synthesised with l-proline as ligand. The achiral monomer phenylacetylene, having two hydroxyl groups and a dodecyl group (DoDHPA), was polymerised for the first time using an isolated chiral Rh(nbd)(l-proline) as catalyst to afford polymers of Mr of 28.5 × 104 and 36.2 × 104. The resulting polymers exhibited the Cotton effect at wavelengths assignable to the main chain, indicating that the polymers adopted one-handed helical conformation. These findings suggest that the rhodium complex with chiral amine may be the true active species for helix-sense-selective polymerisation (HSSP) of DoDHPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aoki, T., Kaneko, T., Maruyama, N., Sumi, A., Takahashi, M., Sato, T., & Teraguchi, M. (2003). Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. Journal of the American Chemical Society, 125, 6346–6347. DOI: 10.1021/ja021233o.

    Article  CAS  Google Scholar 

  • Bondarev, D., Zedník, J., Plutnarová, I., Vohlídal, J., & Sedláček, J. (2010). Molecular weight and configurational stability of poly[(fluorophenyl)acetylene]s prepared with metathesis and insertion catalysts. Journal of Polymer Science Part A: Polymer Chemistry, 48, 4296–4309. DOI: 10.1002/pola.24218.

    Article  CAS  Google Scholar 

  • Hetterscheid, D. G. H., Hendriksen, C., Dzik, W. I., Smits, J. M. M., van Eck, E. R. H., Rowan, A. E., Busico, V., Vacatello, M., Castell, V. V. A., Segre, A., Jellema, E., Bloemberg, T. G., & de Bruin, B. (2006). Rhodium-mediated stereoselective polymerization of “carbenes”. Journal of the American Chemical Society, 128, 9746–9752. DOI: 10.1021/ja058722j.

    Article  CAS  Google Scholar 

  • Hadano, S., Kishimoto, T., Hattori, T., Tanioka, D., Teraguchi, M., Aoki, T., Kaneko, T., Namikoshi, T., & Marwanta, E. (2009). Helix-sense-selective polymerization of achiral bis(hydroxymethyl)phenylacetylenes bearing alkyl groups of different lengths. Macromolecular Chemistry and Physics, 210, 717–727. DOI: 10.1002/macp.200800594.

    Article  CAS  Google Scholar 

  • Jellema, E., Budzelaar, P. H. M., Reek, J. N. H., & de Bruin, B. (2007). Rh-Mediated polymerization of carbenes: Mechanism and stereoregulation. Journal of the American Chemical Society, 129, 11631–11641. DOI: 10.1021/ja073897+.

    Article  CAS  Google Scholar 

  • Jia, H. G., Teraguchi, M., Aoki, T., Abe, Y., Kaneko, T., Hadano, S., Namikoshi, T., & Marwanta, E. (2009). Two modes of asymmetric polymerization of phenylacetylene having a l-valinol residue and two hydroxy groups. Macromolecules, 42, 17–19. DOI: 10.1021/ma802313z.

    Article  CAS  Google Scholar 

  • Jia, H. G., Teraguchi, M., Aoki, T., Abe, Y., Kaneko, T., Hadano, S., Namikoshi, T., & Ohishi, T. (2010). Three mechanisms of asymmetric polymerization of phenylacetylenes having an l-amino ether residue and two hydroxy groups. Macromolecules, 43, 8353–8362. DOI: 10.1021/ma101424x.

    Article  CAS  Google Scholar 

  • Jia, H. G., Li, J., Zang, Y., Aoki, T., Teraguchi, M., & Kaneko, T. (2012). Two modes of asymmetric polymerization of phenylacetylenes having an l-amino alcohol residue and two hydroxy groups. Journal of Polymer Science Part A: Polymer Chemistry, 50, 5134–5143. DOI: 10.1002/pola.26346.

    Article  CAS  Google Scholar 

  • Kaneko, T., Umeda, Y., Yamamoto, T., Teraguchi, M., & Aoki, T. (2005). Assignment of helical sense for poly(phenylacetylene) bearing achiral galvinoxyl chromophore synthesized by helix-sense-selective polymerization. Macromolecules, 38, 9420–9426. DOI: 10.1021/ma050864a.

    Article  CAS  Google Scholar 

  • Kaneko, T., Umeda, Y., Jia, H. G., Hadano, S., Teraguchi, M., & Aoki, T. (2007). Helix-sense tunability induced by achiral diene ligands in the chiral catalytic system for the helixsense-selective polymerization of achiral and bulky phenylacetylene monomers. Macromolecules, 40, 7098–7102. DOI: 10.1021/ma0713963.

    Article  CAS  Google Scholar 

  • Kim, H. J., Lee, D. H., Lee, S., Suzuki, N., Fujiki, M., Lee, C. L., & Kwak, G. (2013). Optically active conjugated polymer from solvent chirality transfer polymerization in monoterpenes. Macromolecular Rapid Communications, 34, 1471–1479. DOI: 10.1002/marc.201300506.

    Article  CAS  Google Scholar 

  • Kumagai, T., & Itsuno, S. (2002). Asymmetric allylation polymerization of bis(allylsilane) and dialdehyde containing arylsilane structure. Macromolecules, 35, 5323–5325. DOI: 10.1021/ma012023j.

    Article  CAS  Google Scholar 

  • Mawatari, Y., Motoshige, A., Yoshida, Y., Motoshige, R., Sasaki, T., & Tabata, M. (2014). Structural determination of stretched helix and contracted helix having yellow and red colors of poly(2-ethynylnaphthalene) prepared with a [Rh(norbornadiene)Cl]2-triethylamine catalyst. Polymer, 55, 2356–2361. DOI: 10.1016/j.polymer.2014.04.001.

    Article  CAS  Google Scholar 

  • Onishi, N., Shiotsuki, M., Sanda, F., & Masuda, T. (2009). Polymerization of phenylacetylenes with rhodium zwitterionic complexes: Enhanced catalytic activity by π-acidic diene ligands. Macromolecules, 42, 4071–4076. DOI: 10.1021/ma900293t.

    Article  CAS  Google Scholar 

  • Sato, T., Aoki, T., Teraguchi, M., Kaneko, T., & Kim, S. Y. (2004). Role of chiral amine cocatalysts in the helix-sense-selective polymerization of a phenylacetylene using a catalytic system. Polymer, 45, 8109–8114. DOI: 10.1016/j.polymer.2004.09.046.

    Article  CAS  Google Scholar 

  • Teraguchi, M., Tanioka, D., Kaneko, T., & Aoki, T. (2012). Helix-sense-selective polymerization of achiral phenylacetylenes with two N-alkylamide groups to generate the one-handed helical polymers stabilized by intramolecular hydrogen bonds. ACS Macro Letters, 1, 1258–1261. DOI: 10.1021/mz300309c.

    Article  CAS  Google Scholar 

  • Trhlíková, O., Zedník, J., Balcar, H., Brus, J., & Sedláček, J. (2013). [Rh(cycloolefin)(acac)] complexes as catalysts of polymerization of aryl-and alkylacetylenes: Influence of cycloolefin ligand and reaction conditions. Journal of Molecular Catalysis A: Chemical, 378, 57–66. DOI: 10.1016/j.molcata.2013.05.022.

    Article  Google Scholar 

  • Victoria Jiménez, M., Pérez-Torrente, J. J., Bartolomé, I. M., Vispe, E., Lahoz, F. J., & Oro, L. A. (2009). Cationic rhodium complexes with hemilabile phosphine ligands as polymerization catalyst for high molecular weight stereoregular poly(phenylacetylene). Macromolecules, 42, 8146–8156. DOI: 10.1021/ma901549g.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, HG., Shi, YQ., Ma, LQ. et al. Asymmetric polymerisation of substituted phenylacetylene using chiral Rh(2,5-norbornadiene)(l-proline) catalyst. Chem. Pap. 69, 756–760 (2015). https://doi.org/10.1515/chempap-2015-0075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0075

Keywords

Navigation