Skip to main content
Log in

Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This paper focuses on the adhesion and biofilm formation potential of cellulolytic yeast Trichosporon cutaneum CCY 30-5-10 on solid cellophane from a novel perspective. First, physicochemical characterisation of the cells and carrier (cellophane) was performed to evaluate the effect of different culture media (complex vs mineral) on yeast cell adhesion. (Un)favourable adhesion conditions were predicted using the thermodynamic approach. Next, the ability of the cells to colonise the carrier under the above conditions was quantified and the biofilm structure was characterised using image analysis. The approaches described were found suitable to predict and experimentally verify favourable (cell-solid) adhesion, i.e. the hydrophobic and low electron-donor nature of cellophane together with hydrophobic cells (obtained when cultivated in a complex culture medium) were found to have a major impact in defining successful yeast adhesion with subsequent biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, A. N., Pomposiello, P. J., & Leschine, S. B. (2008) Biofilm formation in the life cycle of the cellulolytic actinomycete Thermobifida fusca. Biofilms, 2008, 1–11. DOI: 10.1017/s1479050508002238.

    Article  Google Scholar 

  • Beyenal, H., Donovan, C., Lewandowski, Z., & Harkin, G. (2004) Three-dimensional biofilm structure quantification. Journal of Microbiological Methods, 59, 395–413. DOI: 10.1016/j.mimet.2004.08.003.

    Article  CAS  Google Scholar 

  • Bos, R., van der Mei, H. C., & Busscher, H. J. (1999) Physicochemistry of initial microbial adhesive interactions — its mechanisms and methods for study. FEMS Microbiology Reviews, 23, 179–230. DOI: 10.1111/j.1574-6976.1999.tb00396.x.

    Article  CAS  Google Scholar 

  • Bruinsma, G. M., van der Mei, H. C., & Busscher, H. (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials, 22, 3217–3224. DOI: 10.1016/s0142-9612(01)00159-4.

    Article  CAS  Google Scholar 

  • Cerca, N., Pier, G. B., Vilanova, M., Oliveira, R., & Azeredo, J. (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research of Microbiology, 156, 506–514. DOI: 10.1016/j.resmic.2005.01.007.

    Article  CAS  Google Scholar 

  • Cunliffe, D., Smart, C. A., Alexander, C., & Vulfson, E. N. (1999) Bacterial adhesion at synthetic surfaces. Applied and Environment Microbiology, 65, 4995–5002.

    CAS  Google Scholar 

  • Dennis, C. (1972) Breakdown of cellulose by yeast species. Journal of General Microbiology, 71, 409–411. DOI: 10.1099/00221287-71-2-409.

    Article  Google Scholar 

  • Di Bonaventura, G., Pompilio, A., Picciani, C., Iezzi, M., D’Antonio, D., & Piccolomini, R. (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: Development, architecture, and antifungal resistance. Antimicrobial Agents and Chemotherapy, 50, 269–3276. DOI: 10.1128/aac.00556-06.

    Article  Google Scholar 

  • Dufrene, Y. F., & Rouxhet, P. G. (1996) X-ray photoelectron spectroscopy analysis of the surface composition of Azospirillum brasilense in relation to growth conditions. Colloids and Surfaces B: Biointerfaces, 7, 271–279. DOI: 10.1016/0927-7765(96)01295-7.

    Article  CAS  Google Scholar 

  • Dunne, W. M., Jr., (2002) Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 15, 155–166. DOI: 10.1128/cmr.2.155-166.2002.

    Article  CAS  Google Scholar 

  • Fonseca, F. L., Frases, S., Casadevall, A., Fischman-Gompertz, O., Nimrichter, L., & Rodrigues, M. L. (2009) Structural and functional properties of the Trichosporon asahii glucuronoxylomannan. Fungal Genetics and Biology, 46, 496–505. DOI: 10.1016/j.fgb.2009.03.003.

    Article  CAS  Google Scholar 

  • Georgieva, N., Yotova, L., Betcheva, R., Hadzhiyska, H., & Valtchev, I. (2006) Biobleaching of lignin in linen by degradation with Trichosporon cutaneum R57. Journal of the University of Chemical Technology and Metallurgy, Sofia, 41, 153–156.

    CAS  Google Scholar 

  • Gusakov, A. V. (2011) Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29, 419–425. DOI: 10.1016/j.tibtech.2011.04.004.

    Article  CAS  Google Scholar 

  • Hamadi, F., & Latrache, H. (2008) Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface. Colloids and Surfaces B: Biointerfaces, 65, 134–139. DOI: 10.1016/j.colsurfb.2008.03.010.

    Article  CAS  Google Scholar 

  • Hrmová, M., Biely, P., Vršanská, M., & Petráková, E. (1984) Induction of cellulose- and xylan-degrading enzyme complex in the yeast Trichosporon cutaneum. Archives of Microbiology, 138, 371–376. DOI: 10.1007/bf00410906.

    Article  Google Scholar 

  • Ichikawa, T., Nishikawa, A., Wada, H., Ikeda, R., & Shinoda, T. (2001) Structural studies of the antigen III cell wall polysaccharide of Trichosporon domesticum. Carbohydrate Research, 330, 495–503. DOI: 10.1016/s0008-6215(00)00325-6.

    Article  CAS  Google Scholar 

  • Jackson, G., Beyenal, H., Rees, W. M., & Lewandowski, Z. (2001) Growing reproducible biofilms with respect to structure and viable cell counts. Journal of Microbiological Methods, 47, 1–10. DOI: 10.1016/s0167-7012(01)00280-9.

    Article  CAS  Google Scholar 

  • Jana, T. K., Srivastava, A. K., Csery, K., & Arora, D. K. (2000) Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Canadian Journal of Microbiology, 46, 28–37. DOI: 10.1139/w99-104.

    Article  CAS  Google Scholar 

  • Kausar, H., Sariah, M., Mohd Saud, H., Zahangir Alam, M., & Razi Ismail, M. (2011) Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation, 22, 367–375. DOI: 10.1007/s10532-010-9407-3.

    Article  CAS  Google Scholar 

  • Kuřec, M., & Brányik, T. (2011) The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion. Colloids and Surfaces B: Biointerfaces, 84, 491–497. DOI: 10.1016/j.colsurfb.2011.02.004.

    Article  Google Scholar 

  • Lewandowski, Z., & Beyenal, H. (2007) Fundamentals of biofilm research. Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Liu, Y., & Tay, J. H. (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36, 1653–1665. DOI: 10.1016/s0043-1354(01)00379-7.

    Article  CAS  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Research, 66, 506–577. DOI: 10.1128/mmbr.66.3.506-577.2002.

    Article  CAS  Google Scholar 

  • Lynd, L. R., Weimer, P. J., Wolfaardt, G., & Zhang, Y. H. (2006) Cellulose hydrolysis by Clostridium thermocellum: A microbial perspective. In V. Uversky, & I. A. Kataeva (Eds.), Cellulosome: Molecular anatomy and physiology of proteinaceous machines (pp. 95–117). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Mercier-Bonin, M., Ouazzani, K., Schmitz, P., & Lorthois, S. (2004) Study of bioadhesion on a flat plate with a yeast/glass model system. Journal of Colloid and Interface Science, 271, 342–350. DOI: 10.1016/j.jcis.2003.11.045.

    Article  CAS  Google Scholar 

  • Miron, J., & Forsberg, C. (1999) Characterization of cellulose-binding proteins that are involved in adhension mechanism of Fibrobacter intestinalis DR7. Applied Microbiology and Biotechnology, 51, 491–497. DOI: 10.1007/s002530051422.

    Article  CAS  Google Scholar 

  • Miron, J., Ben-Ghedalla, D., & Morrison, M. (2001) Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. Journal of Dairy Science, 84, 1294–1309. DOI: 10.3168/jds.s0022-0302(01)70159-2.

    Article  CAS  Google Scholar 

  • Mohamed, N., Teeters, M.A., Patti, J.M., Höök, M., & Ross, J. M. (1999) Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions. Infection and Immunity, 67, 589–594.

    CAS  Google Scholar 

  • Morrison, M., & Miron, J. (2000) Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and and Pil-proteins? FEMS Microbiol Letters, 185, 109–115. DOI: 10.1111/j.1574-6968.2000.tb09047.x.

    Article  CAS  Google Scholar 

  • Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012) Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Research, 46, 5499–5508. DOI: 10.1016/j.watres.2012.07.029.

    Article  CAS  Google Scholar 

  • Rouxhet, P. G., Mozes, N., Dengis, P. B., Dufręne, Y. F., Gerin, P. A., & Genet, M. J. (1994) Application of x-ray photoelectron spectroscopy to microorganisms. Colloids and Surfaces B: Biointerfaces, 2, 347–369. DOI: 10.1016/0927-7765(94)80049-9.

    Article  CAS  Google Scholar 

  • Sadhu, S., & Maiti, T. K. (2013) Cellulase production by bacteria: A review. British Microbiology Research Journal, 3, 235–258. DOI: 10.9734/bmrj/2013/2367.

    Article  CAS  Google Scholar 

  • Sharma, P. K., & Rao, K. H. (2002) Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Advances in Colloid and Interface Science, 98, 341–463. DOI: 10.1016/s0001-8686(02)00004-0.

    Article  CAS  Google Scholar 

  • Shi, Z. J., Luo, G. S., & Wang, G. J. (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. International Journal of Systematic Evolutionary Microbiology, 62, 2004–2010. DOI: 10.1099/ijs.0.034934-0.

    Article  CAS  Google Scholar 

  • Shoham, Y., Lamed, R., & Bayer, E. A. (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends in Microbiology, 7, 275–281. DOI: 10.1016/s0966-842x(99)01533-4.

    Article  CAS  Google Scholar 

  • Sirmerova, M., Prochazkova, G., Siristova, L., Kolska, Z., & Branyik, T. (2013) Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. Journal of Applied Phycology, 25, 1687–1695. DOI: 10.1007/s10811-013-0015-6.

    Article  CAS  Google Scholar 

  • Song, H. H., Clarke, W. P., & Blackall, L. L. (2005) Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnology and Bioengineering, 91, 369–378. DOI: 10.1002/bit.20517.

    Article  CAS  Google Scholar 

  • Song, N., Cai, H. Y., Yan, Z. S., & Jiang, H. L. (2013) Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresource Technology, 131, 281–287. DOI: 10.1016/j.biortech.2013.01.003.

    Article  CAS  Google Scholar 

  • van Loosdrecht, M.C.M., Heijnen, J.J., Eberl, H., Kreft, J., & Picioreanu, C. (2002) Mathematical modelling of biofilm structures. Antonie van Leeuwenhoek, 81, 245–256. DOI: 10.1023/a:1020527020464.

    Article  Google Scholar 

  • van Oss, C. J. (1995) Hydrophobicity of biosurfaces — origin, quantitative determination and interaction energies. Colloids and Surfaces B: Biointerfaces, 5, 91–110. DOI: 10.1016/0927-7765(95)01217-7.

    Article  Google Scholar 

  • van Oss, C. J. (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16, 177–190. DOI: 10.1002/jmr.618.

    Article  Google Scholar 

  • Wang, Z. W., & Chen, S. L. (2009) Potential of biofilm-based biofuel production. Applied Microbiology and Biotechnology, 83, 1–18. DOI: 10.1007/s00253-009-1940-9.

    Article  CAS  Google Scholar 

  • Wang, Z. W., Lee, S. H., Elkins, J. G., & Morrell-Falvey, J. L. (2011) Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express, 1, 30. DOI: 10.1186/2191-0855-1-30.

    Article  Google Scholar 

  • Wenzel, M., Schönig, I., Berchtold, M., Kämpfer, P., & König, H. (2002) Aerobic and facultatively anaerobic cellulolytic bacteria form the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92, 32–40. DOI: 10.1046/j.1365-2672.2002.01502.x.

    Article  CAS  Google Scholar 

  • Yang, X. M., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000) Quantifying biofilm structure using image analysis. Journal of Microbiological Methods, 39, 109–119. DOI: 10.1016/s0167-7012(99)00097-4.

    Article  CAS  Google Scholar 

  • Young, J. M., Leschine, S. B., & Reguera, G. (2012) Reversible control of biofilm formation by Cellulomonas spp. in response to nitrogen availability. Environmental Microbiology, 14, 594–604. DOI: 10.1111/j.1462-2920.2011.02596.x.

    Article  CAS  Google Scholar 

  • Zhong, L. J., Pang, L. Q., Che, L. M., Wu, X. E., & Chen, X. D. (2013) Nafion coated stainless steel for anti-biofilm application. Colloids and Surfaces B: Biointerfaces, 111, 252–256. DOI: 10.1016/j.colsurfb.2013.05.039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Brányik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dostálková, J., Procházková, G., Jirků, V. et al. Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane. Chem. Pap. 69, 425–432 (2015). https://doi.org/10.1515/chempap-2015-0046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0046

Keywords

Navigation