Skip to main content
Log in

Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Cross-linked enzyme aggregates (CLEA) of Aspergillus oryzea α-amylase (AoAA) and Aspergillus niger glucoamylase (AnGA) were prepared using glutaraldehyde and dextran polyaldehyde as cross-linkers. The maximum activity recoveries for glutaraldehyde cross-linking were 21.8 % and 41.2 %, respectively. The addition of a proteic feeder (bovine serum albumin) exhibited a negative effect on the activity recoveries for both enzymes. Dextran polyaldehyde was used as a cross-linking agent instead of glutaraldehyde to reduce the activity losses. As a result, an activity recovery of 60.0 % was obtained for Aspergillus oryzea α-amylase. On the other hand, no activity recovery was observed for Aspergillus niger glucoamylase due to the latter enzyme’s affinity for dextran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belshaw, N. J., & Williamson, G. (1993) Specificity of the binding domain of glucoamylase 1. European Journal of Biochemistry, 211, 717–724. DOI: 10.1111/J.1432-1033.1993.tb17601.x.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Bryjak, J. (2003) Glucoamylase, α-amylase and β-amylase immobilisation on acrylic carriers. Biochemical Engineering Journal, 16, 347–355. DOI: 10.1016/s1369-703x(03)00114-1.

    Article  CAS  Google Scholar 

  • de Souza, P. M., & de Oliveira Magalhăes, P. (2010) Application of microbial α-amylase in industry: A rewiev. Brazilian Journal of Microbiology, 41, 850–861. DOI: 10.1590/S1517-83822010000400004.

    Google Scholar 

  • Dalal, S., Kapoor, M., & Gupta, M. N. (2007) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. Journal of Molecular Catalysis B: Enzymatic, 44, 128–132. DOI: 10.1016/j.molcatb.2006.10.003.

    Article  CAS  Google Scholar 

  • Gray, K. A., Zhao, L. H., & Emptage, M. (2006) Bioethanol. Current Opinion in Chemical Biology, 10, 141–146. DOI: 10.1016/j.cbpa.2006.02.035.

    Article  CAS  Google Scholar 

  • Gupta, K., Jana, A. K., Kumar, S., & Maiti, M. (2013) Immobilization of amyloglucosidase from SSF of Aspergillus niger by crosslinked enzyme aggregate onto magnetic nanoparticles using minimum amount of carrier and characterizations. Journal of Molecular Catalysis B: Enzymatic, 98, 30–36. DOI: 10.1016/j.molcatb.2013.09.015.

    Article  CAS  Google Scholar 

  • Kartal, F., Janssen, M. H. A., Hollmann, F., Sheldon, R. A., & Kılınc, A. (2011) Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). Journal of Molecular Cataysis. B: Enzymatic, 71, 85–89. DOI: 10.1016/j.molcatb.2011.04.002.

    Article  CAS  Google Scholar 

  • Mateo, C., Palomo, J. M., van Langen, L. M., van Rantwijk, F., & Sheldon, R. A. (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnology and Bioengineering, 86, 273–276. DOI: 10.1002/bit.20033.

    Article  CAS  Google Scholar 

  • Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004) Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37, 790–796, 798–802.

    CAS  Google Scholar 

  • Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Payne, J. W. (1973) Polymerization of proteins with glutaraldehyde. Soluble molecular weight markers. Biochemical Journal, 135, 867–873.

    Article  CAS  Google Scholar 

  • Rajendhran, J., & Gunasekaran, P. (2007) Application of cross-linked enzyme aggregates of Bacillus badius penicillin G acylase for the production of 6-aminopenicillanic acid. Letters in Applied Microbiology, 44, 43–49. DOI: 10.1111/j.1472-765x.2006.02043.x.

    Article  CAS  Google Scholar 

  • Schoevaart, R., Wolbers, M. W., Golubovic, M., Ottens, M., Kieboom, A. P. G., van Rantwijk, F., van der Wielen, L. A. M., & Sheldon, R. A. (2004) Preparation, optimization, and structures, of cross-linked enzyme aggregates (CLEAs). Biotechnology and Bioengineering, 87, 754–762. DOI: 10.1002/bit.20184.

    Article  CAS  Google Scholar 

  • Shah, S., Sharma, A., & Gupta, M. N. (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Analytical Biochemistry, 351, 207–213. DOI: 10.1016/j.ab.2006.01.028.

    Article  CAS  Google Scholar 

  • Sheldon, R. A. (2007) Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307. DOI: 10.1002/adsc.200700082.

    Article  CAS  Google Scholar 

  • Sheldon, R. A. (2011) Cross-linked enzyme aggregates as industrial biocatalysts. Organic Process Research & Development, 15, 213–223. DOI: 10.1021/op100289f.

    Article  CAS  Google Scholar 

  • Talekar, S., Waingade, S., Gaikwad, V., Patil, S., & Nagavekar, N. (2012a) Preparation and characterization of cross linked enzyme aggregates (CLEAs) of Bacillus amyloliquefaciens α-amylase. Journal of Biochemical Technology, 3, 349–353.

    CAS  Google Scholar 

  • Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., & Ladole, M. (2012b) Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of α-amylase. Bioresource Technology, 123, 542–547. DOI: 10.1016/j.biortech.2012.07.044.

    Article  CAS  Google Scholar 

  • Talekar, S., Desai, S., Pillai, M., Nagavekar, N., Ambarkar, S., Surnis, S., Ladole, M., Nadar, S., & Mulla, M. (2013) Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs). RSC Advances, 3, 2265–2271. DOI: 10.1039/c2ra22657j.

    Article  CAS  Google Scholar 

  • van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002) Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155. DOI: 10.1016/s0168-1656(01)00407-2.

    Article  Google Scholar 

  • Wong, D. W. S. (1995) Amylolytic enzymes. In D. W. S. Wong (Ed.), Food enzymes: Structure and mechanism (pp. 37–84). New York, NY, USA: Chapman & Hall.

    Chapter  Google Scholar 

  • Zulkowsky, K. (1880) Verhalten der Stärke gegen Glycerin. Berichte der Deutschen Chemischen Gesellschaft, 13, 1395–1398. DOI: 10.1002/cber.18800130235. (in German)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sercan Sahutoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahutoglu, A.S., Akgul, C. Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates. Chem. Pap. 69, 433–439 (2015). https://doi.org/10.1515/chempap-2015-0031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0031

Keywords

Navigation