Skip to main content
Log in

Preparation of ceramic γ-Al2O3-TiO2 nanofiltration membranes for desalination

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600°C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995) Rejection of mineral salts on a gamma alumina nanofiltration membrane: Application to environmental process. Journal of Membrane Science, 102, 123–129. DOI: 10.1016/0376-7388(94)00302-f.

    Article  CAS  Google Scholar 

  • Blanc, P., Larbot, A., Palmeri, J., Lopez, M., & Cot, L. (1998) Hafnia ceramic nanofltration membranes. Part I: Preparation and characterization. Journal of Membrane Science, 149, 151–161. DOI: 10.1016/s0376-7388(98)00154-9.

    Article  CAS  Google Scholar 

  • Burggraaf, A. J., & Cot, L. (1996) Fundamentals of inorganic membrane science and technology. Amsterdam, The Netherland: Elsevier.

    Book  Google Scholar 

  • Combe, C., Guizard, C., Aimar, E., & Sanchez, V. (1997) Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane. Journal of Membrane Science, 129, 147–160. DOI: 10.1016/s0376-7388(96)00290-6.

    Article  CAS  Google Scholar 

  • de Lint, W. B. S., & Benes, N. E. (2005) Separation properties of γ-alumina nanofiltration membranes compared to charge regulation model predictions. Journal of Membrane Science, 248, 149–159. DOI: 10.1016/j.memsci.2004.08.026.

    Article  Google Scholar 

  • de Lint, W. B. S., Zivkovic, T., Benes, N. E., Bouwmeester, H. J. M., & Blank, D. H. A. (2006) Electrolyte retention of supported bi-layered nanofiltration membranes. Journal of Membrane Science, 277, 18–27. DOI: 10.1016/j.memsci.2005.10.004.

    Article  Google Scholar 

  • Labbez, C., Fievet, P., Szymczyk, A., Thomas, F., Simon, C., Vidonne, A., Pagetti, J., & Foissy, A. (2002a) A comparison of membrane charge of a low nanofiltration membrane determined from ionic retention and tangential streaming potential measurements. Desalination, 147, 223–229. DOI: 10.1016/s0011-9164(02)00539-8.

    Article  CAS  Google Scholar 

  • Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A., & Pagetti, J. (2002b) Analysis of the salt retention of a titania membrane using the “DSPM” model: effect of pH, salt concentration and nature. Journal of Membrane Science, 208, 315–329. DOI: 10.1016/s0376-7388(02)00310-1.

    Article  CAS  Google Scholar 

  • Puhlfürß, P., Voigt, A., Weber, R., & Morbé, M. (2000) Microporous TiO2 membranes with a cut off <500 Da. Journal of Membrane Science, 174, 123–133. DOI: 10.1016/s0376-7388(00)00380-x.

    Article  Google Scholar 

  • Sabbaghi, S., Maleki, R., Shariati-Niassar, M., & Zerafat, M. M. (2012) Modelling chloride ion removal from gas condensates by nanofiltration membrane separation. International Journal of Chemical and Environmental Engineering, 3(1), 30–33.

    CAS  Google Scholar 

  • Schaep, J., Vandecasteele, C., Peeters, B., Luyten, J., Dotremont, C., & Roels, D. (1999) Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration. Journal of Membrane Science, 163, 229–237. DOI: 10.1016/s0376-7388(99)00163-5.

    Article  CAS  Google Scholar 

  • Skluzacek, J. M., Tejedor, M. I., & Anderson, M. A. (2006) An iron-modified silica nanofiltration membrane: Effect of solution composition on salt rejection. Microporous and Mesoporous Materials, 94, 288–294. DOI: 10.1016/j.micromeso.2006.03.043.

    Article  CAS  Google Scholar 

  • Tsuru, T., Hironaka, D., Yoshioka, T., & Asaeda, M. (2001) Titania membranes for liquid phase separation: effect of surface charge on flux. Separation and Purification Technology, 25, 307–314. DOI: 10.1016/s1383-5866(01)00057-0.

    Article  CAS  Google Scholar 

  • Vacassy, R., Guizard, C., Thoraval, V., & Cot, L. (1997) Synthesis and characterization of microporous zirconia powders: Application in nanofilters and nanofiltration characteristics. Journal of Membrane Science, 132, 109–118. DOI: 10.1016/s0376-7388(97)00051-3.

    Article  CAS  Google Scholar 

  • Van Gestel, T., Vandecasteele, C., Buekenhoudt, A., Dotremont, C., Luyten, J., Leysen, R., Van der Burggen, B., & Maes, G. (2002) Salt retention in nanofiltration with multilayer ceramic TiO2 membranes. Journal of Membrane Science, 209, 379–389. DOI: 10.1016/s0376-7388(02)00311-3.

    Article  Google Scholar 

  • Weber, R., Chmiel, H., & Mavrov, V. (2003) Characteristics and application of new ceramic nanofiltration membranes. Desalination, 157, 113–125. DOI: 10.1016/s0011-9164(03)00390-4.

    Article  CAS  Google Scholar 

  • Xu, Q. Y., & Anderson, M. A. (1991) Synthesis of porosity controlled ceramic membranes. Journal of Materials Research, 6, 1073–1081. DOI: 10.1557/jmr.1991.1073.

    Article  CAS  Google Scholar 

  • Yoldas, B. E. (1975) Alumina sol preparation from alkoxides. Ceramic Bulletin, 54, 289–291.

    CAS  Google Scholar 

  • Zerafat, M. M., Shariati-Niassar, M., Hashemi, S. J., Sabbaghi, S., Ismail, A. F., & Matsuura, T. (2013) Mathematical modelling of nanofiltration for concentrated electrolyte solutions. Desalination, 320, 17–23. DOI: 10.1016/j.desal.2013.04.015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samad Sabbaghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, M., Sabbaghi, S. & Zerafat, M.M. Preparation of ceramic γ-Al2O3-TiO2 nanofiltration membranes for desalination. Chem. Pap. 69, 309–315 (2015). https://doi.org/10.1515/chempap-2015-0023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0023

Keywords

Navigation