Skip to main content
Log in

Neuronal homeostasis through translational control

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Translational repression is a key component of the mechanism that establishes segment polarity during early embryonic development in the fruitfly Drosophila melanogaster. Two proteins, Pumilio (Pum) and Nanos, block the translation of hunchback messenger RNA in only the posterior segments, thereby promoting an abdominal fate. More recent studies focusing on postembryonic neuronal function have shown that Pum is also integral to numerous mechanisms that allow neurons to adapt to the changing requirements placed on them in a dynamic nervous system. These mechanisms include those contributing to dendritic structure, synaptic growth, neuronal excitability, and formation of long-term memory. This article describes these new studies and highlights the role of translational repression in regulation of neuronal processes that compensate for change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turrigiano G. G. and Nelson S. B. (2000) Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364.

    Article  PubMed  CAS  Google Scholar 

  2. Ye B., Petritsch C., Clark I. E., Gavis E. R., Jan L. Y., and Jan Y. H. (2004) nanos and pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr. Biol. 14, 314–321.

    Article  PubMed  CAS  Google Scholar 

  3. Menon K. P., Sanyal S., Habara, Y., et al. (2004) The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E. Neuron. 44, 663–676.

    Article  PubMed  CAS  Google Scholar 

  4. Mee C. J., Pym E. C. G., Moffat K. G., and Baines R. A. (2004) Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene. J. Neurosci. 24, 8695–8703.

    Article  PubMed  CAS  Google Scholar 

  5. Dubnau J., Chian A. S., Grady L., et al. (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296.

    Article  PubMed  CAS  Google Scholar 

  6. Tautz D. (1988). Regulation of Drosophila segmentation gene hunchback by two maternal morphogenetic centres. Nature 332, 281–284.

    Article  PubMed  CAS  Google Scholar 

  7. Wharton R. P. and Struhl G. (1991) RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967.

    Article  PubMed  CAS  Google Scholar 

  8. Wharton R. P., Sonoda J., Lee T., Patterson M., and Murata Y. (1998) The Pumilio RNA-binding domain is also a translational repressor. Mol. Cell 1, 863–872.

    Article  PubMed  CAS  Google Scholar 

  9. Zamore P. D., Williamson J. R., and Lehmann R. (1997) The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433.

    PubMed  CAS  Google Scholar 

  10. Wreden C., Verotti A. C., Schisa J. A., Lieberfarb M. E., and Strickland S. (1997) Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124, 3015–3023.

    PubMed  CAS  Google Scholar 

  11. Sonoda J. and Wharton R. P. (1999) Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13, 2704–2712.

    Article  PubMed  CAS  Google Scholar 

  12. Sonoda J. and Wharton R. P. (2001) Drosophila Brain Tumor is a translational repressor. Genes Dev. 15, 762–773.

    Article  PubMed  CAS  Google Scholar 

  13. Chagnovich D. and Lehmann R. (2001) Poly(A)-independent regulation of maternal hunchback translation in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98, 11,359–11,364.

    Article  CAS  Google Scholar 

  14. Dean K. A., Aggarwal A. K., and Wharton R. P. (2002) Translational repressors in Drosophila. Trends Neurosci. 18, 572–576.

    CAS  Google Scholar 

  15. Gavis E. R. (2001). Over the rainbow to translational control. Nat. Struct. Biol. 18, 387–389.

    Article  Google Scholar 

  16. Parisi M. and Lin H. (2000) Translational repression: A duet of nanos and pumilio. Curr. Biol. 10, R81-R83.

    Article  PubMed  CAS  Google Scholar 

  17. Jan Y. H. and Jan L. Y. (2003) The control of dendrite development. Neuron 40, 229–242.

    Article  PubMed  CAS  Google Scholar 

  18. Wässle H. and Boycott B. B. (1991) Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–478.

    PubMed  Google Scholar 

  19. MacNeil M. A. and Masland R. H. (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20, 971–982.

    Article  PubMed  CAS  Google Scholar 

  20. Sestan N., Artavanis-Tsakonas S., and Rakic P. (1999) Contact-dependent inhibition of cortical neurite growth mediated by notch signalling. Science 286, 741–746.

    Article  PubMed  CAS  Google Scholar 

  21. Logan M. A. and Vetter M. L. (2004) Do-it-yourself tiling: dendritic growth in the absence of homotypic contacts. Neuron 43, 439–446.

    Article  PubMed  CAS  Google Scholar 

  22. Steward O. and Schuman E. M. (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 229–325.

    Article  Google Scholar 

  23. Tang A. J. and Schuman E. M. (2000) Protein synthesis in the dendrite. Phil. Trans. R. Soc. Lond. B. 357, 521–529.

    Article  Google Scholar 

  24. Grueber W. B., Ye B., Moore A. W., Jan L. Y., and Jan Y. N. (2003) Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr. Biol. 13, 618–626.

    Article  PubMed  CAS  Google Scholar 

  25. Knowles R. B., Sabry J. H., Martone M. E., et al. (1996) Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820.

    PubMed  CAS  Google Scholar 

  26. Davis G. W. and Bezprozvanny I. (2001) Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847–869.

    Article  PubMed  CAS  Google Scholar 

  27. Davis G. W. and Goodman C. S. (1998) Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86.

    Article  PubMed  CAS  Google Scholar 

  28. Sigrist S. J., Thiel P. R., Reiff D. F., Lachance P. E., Lasko P., and Schuster C. M. (2000) Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature 405, 1062–1065.

    Article  PubMed  CAS  Google Scholar 

  29. Sigrist S. J., Thiel P. R., Reiff D. F., and Schuster C. M. (2002) The postsynaptic glutamate receptor subunit DgluR-IIA mediates long-term plasticity in Drosophila. J. Neurosci. 22, 7362–7372.

    PubMed  CAS  Google Scholar 

  30. Edwards T. A., Pyle S. E., Wharton R. P., and Aggarwal A. K. (2001) Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289.

    Article  PubMed  CAS  Google Scholar 

  31. Wang X., Zamore P. D., and Hall T. M. (2001) Crystal structure of a Pumilio homology domain. Mol. Cell 7, 855–865.

    Article  PubMed  CAS  Google Scholar 

  32. Desai N. S., Rutherford L. C., and Turrigiano G. G. (1999) Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520.

    Article  PubMed  CAS  Google Scholar 

  33. Baines R. A., Uhler J. P., Thompson A., Sweeney S. T., and Bate M. (2001) Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531.

    PubMed  CAS  Google Scholar 

  34. Baines R. A. (2003) Postsynaptic protein kinase A reduces neuronal excitability in response to increased synaptic excitation in the Drosophila CNS. J. Neurosci. 23, 8664–8672.

    PubMed  CAS  Google Scholar 

  35. Li M., West J. W., Lai Y., Scheuer T., and Catterall W. A. (1992) Functional modulation of brain sodium channels by cAMP-dependent phosphorylation. Neuron 8, 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  36. Smith R. D. and Goldin A. L. (1997) Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J. Neurosci. 17, 6086–6093.

    PubMed  CAS  Google Scholar 

  37. Catterall W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.

    Article  PubMed  CAS  Google Scholar 

  38. Stern M., Blake N., Zondlo N., and Walters K. (1995) Increased neuronal excitability conferred by a mutation in the Drosophila bemused gene. J. Neurogenet. 10, 103–118.

    PubMed  CAS  Google Scholar 

  39. Stern M. and Ganetzky B. (1989) Altered synaptic transmission in Drosophila hyperkinetic mutants. J. Neurogenet. 5, 215–228.

    PubMed  CAS  Google Scholar 

  40. Stern M., Kreber R., and Ganetzky B. (1990) Dosage effects of a Drosophila sodium channel gene on behavior and axonal excitability. Genetics 124, 133–143.

    PubMed  CAS  Google Scholar 

  41. Schweers B. A., Walters K. J., and Stern M. (2002) The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability. Genetics 161, 1177–1185.

    PubMed  CAS  Google Scholar 

  42. Barker D. D., Wang C., Moore J., Dickinson L. K., and Lehmann R. (1992) Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 6, 2312–2326.

    Article  PubMed  CAS  Google Scholar 

  43. Macdonald P. M. (1992) The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114, 221–232.

    PubMed  CAS  Google Scholar 

  44. Zhang B., Gallegos M., Puoti A., et al. (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484.

    Article  PubMed  CAS  Google Scholar 

  45. Spassov D. S. and Jurecic R. (2002) Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteins. Gene 299, 195–204.

    Article  PubMed  CAS  Google Scholar 

  46. Spassov D. S. and Jurecic R. (2003) MousePum1 and Pum2 genes, members of the Pumilio family of proteins, show differential expression in fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol. Dis. 30, 55–69.

    Article  PubMed  CAS  Google Scholar 

  47. White E. K., Moore-Jarrett T., and Ruley H. E. (2001) PUM2, a novel murine puf protein, and its consensus RNA-binding site. RNA 12, 1855–1866.

    Google Scholar 

  48. Jaruzelska J., Kotecki M., Kusz K., Spik A., Firpo M., and Reijo Pera R. A. (2003) Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev. Genes Evol. 213, 120–126.

    PubMed  CAS  Google Scholar 

  49. Haraguchi S., Tsuda M., Kitajima S., et al. (2003) nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mech. Dev. 120, 721–731.

    Article  PubMed  CAS  Google Scholar 

  50. Tsuda M., Sasaoka Y., Kiso M., et al. (2003) Conserved role of nanos proteins in germ cell development. Science 301, 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  51. Lipshitz H. D. and Smibert C. A. (2000) Mechanisms of RNA localization and translational regulation. Curr. Opin. Gen. Dev. 10, 476–488.

    Article  CAS  Google Scholar 

  52. Steward O. and Schuman E. M. (2003) Compartmentalized synthesis and degradation of protein in neurons. Neuron 40, 347–359.

    Article  PubMed  CAS  Google Scholar 

  53. Miller S., Yasuda M., Coats J. K., Jones Y., Martone M. E., and Mayford M. (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519.

    Article  PubMed  CAS  Google Scholar 

  54. Kiebler M. A. and DesGroseillers L. (2000) Molecular insights into mRNA transport and local translation in the mammalian nervous system. Neuron 25, 19–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Baines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baines, R.A. Neuronal homeostasis through translational control. Mol Neurobiol 32, 113–121 (2005). https://doi.org/10.1385/MN:32:2:113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:2:113

Index Entries

Navigation