Skip to main content
Log in

Protein misfolding, aggregation, and degradation in disease

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pathologies associated with protein misfolding have been observed in neurodegenerative diseases such as Alzheimer’s disease, metabolic diseases like phenylketonuria, and diseases affecting structural proteins like collagen or keratin. Misfolding of mutant proteins in these and many other diseases may result in premature degradation, formation of toxic aggregates, or incorporation of toxic conformations into structures. We review common traits of these diverse diseases under the unifying view of protein misfolding. The molecular pathogenesis is discussed in the context of protein quality control systems consisting of molecular chaperones and intracellular proteases that assist the folding and supervise the maintenance of the folded structure. Furthermore, genetic and environmental factors that may modify the severity of these diseases are underscored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrell, R. W. and Lomas, D. A. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  2. Carrell, R. W. and Lomas, D. A. (2002) Alphal-antitrypsin deficiency—a model for conformational diseases. N. Engl. J. Med. 346, 45–53.

    Article  PubMed  CAS  Google Scholar 

  3. Crowther, D. C. (2002) Familial conformational diseases and dementias. Hum. Mutat. 20, 1–14.

    Article  PubMed  CAS  Google Scholar 

  4. Sorensen, C. B., Ladekjaer-Mikkelsen, A. S., Andresen, B. S., et al. (1999) Identification of novel and known mutations in the genes for keratin 5 and 14 in Danish patients with epidermolysis bullosa simplex: correlation between genotype and phenotype. J. Invest Dermatol. 112, 184–190.

    Article  PubMed  CAS  Google Scholar 

  5. Baum, J. and Brodsky, B. (1999) folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 9, 122–128.

    Article  PubMed  CAS  Google Scholar 

  6. Burch, M. and Blair, E. (1999) The inheritance of hypertrophic cardiomyopathy. Pediatr. Cardiol. 20, 313–316.

    Article  PubMed  CAS  Google Scholar 

  7. Monti, P., Campomenosi, P., Ciribilli, Y., et al. (2002) Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene 21, 1641–1648.

    Article  PubMed  CAS  Google Scholar 

  8. Bross, P., Corydon, T. J., Andresen, B. S., Jørgensen, M. M., Bolund, L., and Gregersen, N. (1999) Protein misfolding and degradation in genetic diseases. Hum. Mutat. 14, 186–198.

    Article  PubMed  CAS  Google Scholar 

  9. Gregersen, N., Bross, P., Andresen, B. S., Pedersen, C. B., Corydon, T. J., and Bolund, L. (2001) The role of chaperone-assisted folding and quality control in inborn errors of metabolism: protein folding disorders. J. Inherit. Metab. Dis. 24, 189–212.

    Article  PubMed  CAS  Google Scholar 

  10. Waters, P. J. (2001) Degradation of mutant proteins, underlying “loss of function” phenotypes, plays a major role in genetic disease. Curr. Issues Mol. Biol. 3, 57–65.

    PubMed  CAS  Google Scholar 

  11. Riordan, J. R. (1999) Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am. J. Hum. Genet. 64, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  12. Waters, P. J., Parniak, M. A., Akerman, B. R., and Scriver, C. R. (2000) Characterization of phenylketonuria missense substitutions, distant from the phenylalanine hydroxylase active site, illustrates a paradigm for mechanism and potential modulation of phenotype. Mol. Genet. Metab. 69, 101–110.

    Article  PubMed  CAS  Google Scholar 

  13. Waters, P. J. (2003) How PAH gene mutations cause hyper-phenylalaninemia and why mechanism matters: insights from in vitro expression. Hum. Mutat. 21, 357–369.

    Article  PubMed  CAS  Google Scholar 

  14. Perlmutter, D. H. (1999) Misfolded proteins in the endoplasmic reticulum. Lab. Invest. 79, 623–638.

    PubMed  CAS  Google Scholar 

  15. Gregersen, N., Andresen, B. S., Corydon, M. J., et al. (2001) Mutation analysis in mitochondrial fatty acid oxidation defects: exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum. Mutat. 18, 169–189.

    Article  PubMed  CAS  Google Scholar 

  16. Gregersen, N., Bross, P., and Andresen, B. S. (2004) Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Eur. J. Biochem. 271, 470–482.

    Article  PubMed  CAS  Google Scholar 

  17. Bross, P. and Gregersen, N. (2003) Protein Misfolding and Disease—Principles and Protocols. Humana, Totowa, NJ.

    Google Scholar 

  18. Uversky, V. N. (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756.

    Article  PubMed  CAS  Google Scholar 

  19. Barral, J. M., Broadley, S. A., Schaffar, G., and Hartl, F. U. (2004) Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17–29.

    Article  PubMed  CAS  Google Scholar 

  20. Gregersen, N., Bross, P., and Jørgensen, M. M. Chapter 13.1: Protein folding and misfolding: The role of cellular protein quality control systems in inherited disorders. In: MMBID-ONLINE (Scriver, C. R., Beaudet, A. L., Valle, D., Sly, W. S., Vogelstein, B., Childs, B., and Kinzler, K. W., eds.), McGraw-Hill, New York, URL: http://genetics.accessmedicine.com.

  21. Cooper, D. N. and Krawczak, M. (1993) Human Gene Mutation. Bios Scientific Publishers, Ltd., Oxford, UK.

    Google Scholar 

  22. Krawczak, M., Ball, E. V., Fenton, I., et al. (2000) Human gene mutation database—a biomedical information and research resource. Hum. Mutat. 15, 45–51.

    Article  PubMed  CAS  Google Scholar 

  23. Cartegni, L., Chew, S. L., and Krainer, A. R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298.

    Article  PubMed  CAS  Google Scholar 

  24. Milewski, M. I., Mickle, J. E., Forrest, J. K., Stanton, B. A., and Cutting, G. R. (2002) Aggregation of misfolded proteins can be a selective process dependent upon peptide composition. J. Biol. Chem. 277, 34462–34470.

    Article  PubMed  CAS  Google Scholar 

  25. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  26. Pedersen, C. B., Bross, P., Winter, V. S., et al. (2003) Misfolding, Degradation, and aggregation of variant proteins: the molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J. Biol. Chem. 278, 47449–47458.

    Article  PubMed  CAS  Google Scholar 

  27. Vladutiu, G. D. (1999) Biochemical and molecular correlations in carnitine palmitoyltransferase II deficiency. Muscle Nerve 22, 949–951.

    Article  PubMed  CAS  Google Scholar 

  28. Sorensen, C. B., Ladekjaer-Mikkelsen, A. S., Andresen, B. S., et al. (1999) Identification of novel and known mutations in the genes for keratin 5 and 14 in Danish patients with epidermolysis bullosa simplex: correlation between genotype and phenotype. J. Invest Dermatol. 112, 184–190.

    Article  PubMed  CAS  Google Scholar 

  29. Dobson, C. M. (2001) The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond B Biol. Sci. 356, 133–145.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, Y., Whitman, I., Molmenti, E., Moore, K., Hippenmeyer, P., and Perlmutter, D. H. (1994) A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc. Natl. Acad. Sci. USA 91, 9014–9018.

    Article  PubMed  CAS  Google Scholar 

  31. Lomas, D. A., Evans, D. L., Finch, J. T., and Carrell, R. W. (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357, 605–607.

    Article  PubMed  CAS  Google Scholar 

  32. Perutz, M. F. (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci. 24, 58–63.

    Article  PubMed  CAS  Google Scholar 

  33. Mattson, M. P., Chan, S. L., and Duan, W. (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol. Rev. 82, 637–672.

    PubMed  CAS  Google Scholar 

  34. Taylor, J. P., Hardy, J., and Fischbeck, K. H. (2002) Toxic proteins in neurodegenerative disease. Science 296, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  35. Zoghbi, H. Y. and Botas, J. (2002) Mouse and fly models of neurodegeneration. Trends Genet. 18, 463–471.

    Article  PubMed  CAS  Google Scholar 

  36. Chiti, F., Taddei, N., Baroni, F., et al. (2002) Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 9, 137–143.

    Article  PubMed  CAS  Google Scholar 

  37. Soto, C. (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207.

    Article  PubMed  CAS  Google Scholar 

  38. Bucciantini, M., Giannoni, E., Chiti, F., et al. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    Article  PubMed  CAS  Google Scholar 

  40. Kayed, R., Head, E., Thompson, J. L., et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.

    Article  PubMed  CAS  Google Scholar 

  41. Teckman, J. H. and Perlmutter, D. H. (2000) Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol Gastrointest. Liver Physiol. 279, G961-G974.

    PubMed  CAS  Google Scholar 

  42. Earl, R. T., Mangiapane, E. H., Billett, E. E., and Mayer, R. J. (1987) A putative protein-sequestration site involving intermediate filaments for protein degradation by autophagy. Studies with transplanted Sendai-viral envelope proteins in HTC cells. Biochem. J. 241, 809–815.

    PubMed  CAS  Google Scholar 

  43. Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K., and Martoglio, B. (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y., Turner, R. S., and Gaut, J. R. (1998) The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J. Biol. Chem. 273, 25552–25555.

    Article  PubMed  CAS  Google Scholar 

  45. Weber, A. J., Soong, G., Bryan, R., Saba, S., and Prince, A. (2001) Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am. J. Physiol Lung Cell Mol. Physiol. 281, L71-L78.

    PubMed  CAS  Google Scholar 

  46. Zhao, Q., Wang, J., Levichkin, I. V., Stasinopoulos, S., Ryan, M. T., and Hoogenraad, N. J. (2002) A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419.

    Article  PubMed  CAS  Google Scholar 

  47. Uversky, V. N., Lee, H. J., Li, J., Fink, A. L., and Lee, S. J. (2001) Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J. Biol. Chem. 276, 43495–43498.

    Article  PubMed  CAS  Google Scholar 

  48. Beal, M. F. (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23, 298–304.

    Article  PubMed  CAS  Google Scholar 

  49. Butterfield, D. A. and Kanski, J. (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech. Ageing Dev. 122, 945–962.

    Article  PubMed  CAS  Google Scholar 

  50. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  51. Imaizumi, K., Miyoshi, K., Katayama, T., et al. (2001) The unfolded protein response and Alzheimer’s disease. Biochim. Biophys. Acta 1536, 85–96.

    PubMed  CAS  Google Scholar 

  52. Martindale, J. L. and Holbrook, N. J. (2002) Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192, 1–15.

    Article  PubMed  CAS  Google Scholar 

  53. Hughes, R. E. (2002) Polyglutamine disease: acetyltransferases awry. Curr. Biol. 12, R141-R143.

    Article  PubMed  CAS  Google Scholar 

  54. Schaffar, G., Breuer, P., Boteva, R., et al. (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105.

    Article  PubMed  CAS  Google Scholar 

  55. Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., and Nystrom, T. (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 97, 5746–5749.

    Article  PubMed  CAS  Google Scholar 

  56. Gamez, A., Perez, B., Ugarte, M., and Desviat, L. R. (2000) Expression analysis of phenylketonuria mutations. Effect on folding and stability of the phenylalanine hydroxylase protein. J. Biol. Chem. 275, 29,737–29,742.

    Article  CAS  Google Scholar 

  57. Pind, S., Riordan, J. R., and Williams, D. B. (1994) Participation of the endoplasmic reticulum chaperone calnexin (P88, Ip90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12784–12788.

    PubMed  CAS  Google Scholar 

  58. Qu, D. F., Teckman, J. H., Omura, S., and Perlmutter, D. H. (1996) Degradation of a mutant secretory protein, alpha(1)- antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271, 22791–22795.

    Article  PubMed  CAS  Google Scholar 

  59. Soti, C. and Csermely, P. (2000) Molecular chaperones and the aging process. Biogerontology 1, 225–233.

    Article  PubMed  CAS  Google Scholar 

  60. Macario, A. J. and Conway de, M. E. (2002) Sick chaperones and ageing: a perspective. Ageing Res. Rev. 1, 295–311.

    Article  PubMed  CAS  Google Scholar 

  61. Slavotinek, A. M. and Biesecker, L. G. (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet. 17, 528–535.

    Article  PubMed  CAS  Google Scholar 

  62. Benndorf, R. and Welsh, M. J. (2004) Shocking degeneration. Nat. Genet. 36, 547–548.

    Article  PubMed  CAS  Google Scholar 

  63. Casari, G., De Fusco, M., Ciarmatori, S., et al. (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983.

    Article  PubMed  CAS  Google Scholar 

  64. Hazan, J., Fonknechten, N., Mavel, D., et al. (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet. 23, 296–303.

    Article  PubMed  CAS  Google Scholar 

  65. Hansen, J. J., Dürr, A., Cournu-Rebeix, I., et al. (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328–1332.

    Article  PubMed  CAS  Google Scholar 

  66. Atorino, L., Silvestri, L., Koppen, M., et al. (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol. 163, 777–787.

    Article  PubMed  CAS  Google Scholar 

  67. Litt, M., Kramer, P., LaMorticella, D. M., Murphey, W., Lovrien, E. W., and Weleber, R. G. (1998) Autosomal dominant mutation of congenital cataract associated with a missense mutation in the alpha-crystallin gene CRYAA. Hum. Mol. Genet. 7, 471–474.

    Article  PubMed  CAS  Google Scholar 

  68. Noor, R., Mittal, S., and Iqbal, J. (2002) Superoxide dismutase—applications and relevance to human diseases. Med. Sci. Monit. 8, RA210-RA215.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bross.

Additional information

The present article represents a partly revised and updated version of chapter 1 published earlier in volume 232 of the series Methods in Molecular Biology (Walker, J. M., ed., Humana Press, Totowa, NJ), Protein Misfolding and Disease: Principles and Protocols (Bross, P. & Gregersen, N., eds.), pp. 3–16 (2003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N., Bolund, L. & Bross, P. Protein misfolding, aggregation, and degradation in disease. Mol Biotechnol 31, 141–150 (2005). https://doi.org/10.1385/MB:31:2:141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:31:2:141

Index Entries

Navigation