Skip to main content
Log in

The CD94/NKG2 family of receptors

From molecules and cells to clinical relevance

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+T cells, and they have been shown to play an important role in regulating responses against infected and tumori genic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellon T, Heredia AB, Llano M, et al: Triggering of effector functions on a CD8+ T cell clone upon the aggregation of an activatory CD94/kp39 heterodimer. J Immunol 1999;162(7):3996–4002.

    PubMed  CAS  Google Scholar 

  2. Brooks AG, Posch PE, Scorzelli CJ, Borrego F, Coligan JE, NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor. J Exp Med 1997;185(4):795–800.

    PubMed  CAS  Google Scholar 

  3. Carretero M, Cantoni C, Bellon T, et al: The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 1997;27(2):563–567.

    PubMed  CAS  Google Scholar 

  4. Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH: Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 1996;157(11):4741–4745.

    PubMed  CAS  Google Scholar 

  5. Lieto LD, Maasho K, West D, Borrego F, Coligan JE: The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B. Genes Immun 2006;7(1):36–43.

    PubMed  CAS  Google Scholar 

  6. Lanier LL, Corliss B, Wu J, Phillips JH: Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 1998;8(6):693–701.

    PubMed  CAS  Google Scholar 

  7. Vance RE, Jamieson AM, Raulet DH: Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J Exp Med 1999;190(12):1801–1812.

    PubMed  CAS  Google Scholar 

  8. Phillips JH, Chang C, Mattson J, Gumperz JE, Parham P, Lanier LL: CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and HLA-C allotypes. Immunity 1996;5(2):163–172.

    PubMed  CAS  Google Scholar 

  9. Soderstrom K, Corliss B, Lanier LL, Phillips JH: CD94/NKG2 is the predominant inhibitory receptor involved in recognition of HLA-G by decidual and peripheral blood NK cells. J Immunol 1997;159(3): 1072–1075.

    PubMed  CAS  Google Scholar 

  10. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG: Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class 1 signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 1998;187(5):813–818.

    PubMed  CAS  Google Scholar 

  11. Braud VM, Allan DS, O'Callaghan CA, et al: HLA-E binds to natural killer cell receptors CD94/NKG2A,B and C. Nature 1998;391(6669):795–799.

    PubMed  CAS  Google Scholar 

  12. Brooks AG, Borrego F, Posch PE, et al: Specific recognition of HLA-E, but not classical, HLA class I molecules by soluble CD94/NKG2A and NK cells. J Immunol 1999;162(1):305–313.

    PubMed  CAS  Google Scholar 

  13. Lee N, Llano M, Carretero M, et al: HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 1998;95(9): 5199–5204.

    PubMed  CAS  Google Scholar 

  14. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH: Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 1998;188(10):1841–1848.

    PubMed  CAS  Google Scholar 

  15. Wei XH, Orr HT: Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Hum Immunol 1990;29(2):131–142.

    PubMed  CAS  Google Scholar 

  16. Kraft JR, Vance RE, Pohl J, Martin AM, Raulet DH, Jensen PE: Analysis of Qa-1(b) peptide binding specificity and the capacity of CD94/NKG2A to discriminate between Qa-1-peptide complexes. J Exp Med 2000;192(5):613–624.

    PubMed  CAS  Google Scholar 

  17. Kurepa Z, Hasemann CA, Forman J: Qa-1b binds conserved class I leader peptides derived from several mammalian species. J Exp Med 1998;188(5):973–978.

    PubMed  CAS  Google Scholar 

  18. O'Callaghan CA, Bell JI: Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998;163:129–138.

    PubMed  Google Scholar 

  19. O'Callagham CA, Tormo J, Willcox BE, et al: Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol Cell 1998;1(4):531–541.

    Google Scholar 

  20. Braud VM, Allan DS, Wilson D, McMichael AJ: TAP-and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 1998;8(1):1–10.

    PubMed  CAS  Google Scholar 

  21. Bland FA, Lemberg MK, McMichael AJ, Martoglio B, Braud VM: Requirement of the proteasome for the trimming of signal peptide-derived epitopes presented by the nonclassical major histocompatibility complex class I molecule HLA-E. J Biol Chem 2003;278(36): 33747–33752.

    PubMed  CAS  Google Scholar 

  22. Geraghty DE, Stockschleader M, Ishitani A, Hansen JA: Polymorphism at the HLA-E locus predates most HLA-A and-B polymorphism. Hum Immunol 1992;33(3):174–184.

    PubMed  CAS  Google Scholar 

  23. Maier S, Grzeschik M, Weiss EH, Ulbrecht M: Implications of HLA-E allele expression and different HLA-E ligand diversity for the regulation of NK cells. Hum Immunol 2000;61(11):1059–1065.

    PubMed  CAS  Google Scholar 

  24. Strong RK, Holmes MA, Li P, Braun L, Lee N, Geraghty DE: HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J Biol Chem 2003;278(7): 5082–5090.

    PubMed  CAS  Google Scholar 

  25. Wooden SL, Kalb SR, Cotter RJ, Soloski MJ: Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis. J Immunol 2005;175(3):1383–1387.

    PubMed  CAS  Google Scholar 

  26. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, Soderstrom K: A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 2002;196(11): 1403–1414.

    PubMed  CAS  Google Scholar 

  27. Hoare HL, Sullivan LC, Pietra G, et al: Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat Immunol 2006;7(3): 256–264.

    PubMed  CAS  Google Scholar 

  28. Salerno-Goncalves R, Fernandez-Vina M, Lewinsohn DM, Sztein MB. Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 2004;173(9):5852–5862.

    PubMed  CAS  Google Scholar 

  29. Jensen PE, Sullivan BA, Reed-Loisel LM, Weber DA: Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol Res 2004;29(1–3):81–92.

    PubMed  CAS  Google Scholar 

  30. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL: Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 1999;18(15):4250–4260.

    PubMed  CAS  Google Scholar 

  31. Kaiser BK, Barahmand-Pour F, Paulsene W, Medley S, Geraghty DE, Strong RK. Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics. J Immunol 2005;174(5):2878–2884.

    PubMed  CAS  Google Scholar 

  32. Llano M, Lee N, Navarro F, et al: HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur J Immunol 1998;28(9): 2854–2863.

    PubMed  CAS  Google Scholar 

  33. Stewart CA, Laugier-Anfossi F, Vely F, et al: Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 2005;102(37):13224–13229.

    PubMed  CAS  Google Scholar 

  34. Vales-Gomez M, Reyburn HT, Mandelboim M, Strominger JL: Kinetics of interaction of HLA-C ligands with natural killer cell inhibitory receptors. Immunity 1998;9(3):337–344.

    PubMed  CAS  Google Scholar 

  35. Boyington JC, Riaz AN, Patamawenu A, Coligan JE, Brooks AG, Sun PD: Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. Immunity 1999;10(1): 75–82.

    PubMed  CAS  Google Scholar 

  36. Wada H, Matsumoto N, Maenaka K, Suzuki K, Yamamoto K: The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur J Immunol 2004;34(1):81–90.

    PubMed  CAS  Google Scholar 

  37. Miller JD, Weber DA, Ibegbu C, Pohl J, Altman JD, Jensen PE: Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J Immunol 2003;171(3):1369–1375.

    PubMed  CAS  Google Scholar 

  38. Bromley SK, Burack WR, Johnson KG, et al: The immunological synapse. Annu Rev Immunol 2001;19:375–396.

    PubMed  CAS  Google Scholar 

  39. McCann FE, Suhling K, Carlin LM, et al: Imaging immune surveillance by T cells and NK cells. Immunol Rev 2002;189:179–192.

    PubMed  CAS  Google Scholar 

  40. Vyas YM, Maniar H, Dupont B: Visualization of signaling path ways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev 2002;189:161–178.

    PubMed  CAS  Google Scholar 

  41. Davis DM, Dustin ML: What is the importance of the immunological synapse? Trends Immunol 2004;25(6): 323–327.

    PubMed  CAS  Google Scholar 

  42. Lou Z, Jevremovic D, Billadeau DD, Leibson PJ: A balance between positive and negative signals in cytotoxic lymphocytes regulates the polarization of lipid rafts during the development of cell-mediated killing. J Exp Med 2000;191(2):347–354.

    PubMed  CAS  Google Scholar 

  43. Vyas YM, Mehta KM, Morgan M, et al: Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol 2001;167(8):4358–4367.

    PubMed  CAS  Google Scholar 

  44. Fassett MS, Davis DM, Valter MM, Cohen GB, Strominger JL: Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering. Proc Natl Acad Sci USA 2001;98(25):14547–14552.

    PubMed  CAS  Google Scholar 

  45. Lippincott-Schwartz J, Snapp E, Kenworthy A: Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2001;2(6):444–456.

    PubMed  CAS  Google Scholar 

  46. Sanni TB, Masilamani M, Kabat J, Coligan JE, Borrego F: Exclusion of lipid rafts and decreased mobility of CD94/NKG2A receptors at the inhibitory NK cell synapse. Mol Biol Cell 2004;15(7):3210–3223.

    PubMed  CAS  Google Scholar 

  47. Kabat J, Borrego F, Brooks A, Coligan JE: Role that each NKG2A immunoreceptor tyrosine-based inhibitory motif plays in mediating the human CD94/NKG2A inhibitory signal. J Immunol 2002; 169(4):1948–1958.

    PubMed  CAS  Google Scholar 

  48. Le Drean E, Vely F, Olcese L, et al: Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur J Immunol 1998;28(1):264–276.

    PubMed  Google Scholar 

  49. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO: Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 2003; 23(17):6291–6299.

    PubMed  CAS  Google Scholar 

  50. Watzl C, Long EO: Natural killer cell inhibitory receptors block actin cytoskeleton-dependent recruitment of 2B4 (CD244) to lipid rafts. J Exp Med 2003;179(1): 77–85.

    Google Scholar 

  51. Hornstein I, Alcover A, Katzav S: Vav proteins, masters of the world of cytoskeleton organization. Cell Signal 2004;16(1):1–11.

    PubMed  CAS  Google Scholar 

  52. McMahon CW, Zajac AJ, Jamieson AM, et al: Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8(+) T cells. J Immunol 2002;169(3):1444–1452.

    PubMed  CAS  Google Scholar 

  53. Eriksson M, Leitz G, Fallman E, et al: Inhibitory receptors alter natural killer cell interactions with target cells yet allow simultaneous killing of susceptible targets. J Exp Med 1999;190(7):1005–1012.

    PubMed  CAS  Google Scholar 

  54. Lanier LL: NK cell recognition. Annu Rev Immunol 2005;23:225–274.

    PubMed  CAS  Google Scholar 

  55. Ortaldo JR, Young HA. Mouse Ly49 NK receptors: balancing activation and inhibition. Mol Immunol 2005;42(4):445–450.

    PubMed  CAS  Google Scholar 

  56. Sancho D, Nieto M, Llano M, et al: The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J Cell Biol 2000;149(6):1249–1262.

    PubMed  CAS  Google Scholar 

  57. Carretero M, Llano M, Navarro F, Bellon T, Lopez-Botet M: Mitogen-activated protein kinase activity is involved in effector functions triggered by the CD94/NKG2-C NK receptor specific for HLA-E. Eur J Immunol 2000;30(10):2842–2848.

    PubMed  CAS  Google Scholar 

  58. Alcover A, Alarcon B: Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol 2000;20(4):325–346.

    PubMed  CAS  Google Scholar 

  59. Borrego F, Kabat J, Sanni TB, Coligan JE: NK cell CD94/NKG2A inhibitory receptors are internalized and recycle indepdently of inhibitory signaling processes. J Immunol 2002;169(11):6102–6111.

    PubMed  CAS  Google Scholar 

  60. Huard B, Karlsson L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature 2000;403(6767):325–328.

    PubMed  CAS  Google Scholar 

  61. Huard B, Karlsson L, Triebel F. KIR down-regulation on NK cells is associated with down-regulation of activating receptors and NK cell inactivation. Eur J Immunol 2001;31(6):1728–1735.

    PubMed  CAS  Google Scholar 

  62. Mellman I: Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996;12:575–625.

    PubMed  CAS  Google Scholar 

  63. Valiante NM, Uhrberg M, Shilling HG, et al: Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997;7(6):739–751.

    PubMed  CAS  Google Scholar 

  64. Borrego F, Kabat J, Kim DK, et al: Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002;38(9):637–660.

    PubMed  CAS  Google Scholar 

  65. Raulet DH, Vance RE, McMahon CW: Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001;19:291–330.

    PubMed  CAS  Google Scholar 

  66. Glienke J, Sobanov Y, Brostjan C, et al: The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 1998;48(3):163–173.

    PubMed  CAS  Google Scholar 

  67. Kim DK, Kabat J, Borrego F, Sanni TB, You CH, Coligan JE: Human NKG2F is expressed and can associate with DAP12. Mol Immunol 2004;41(1):53–62.

    PubMed  CAS  Google Scholar 

  68. Wu J, Song Y, Bakker AB, et al: An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999;285(5428):730–732.

    PubMed  CAS  Google Scholar 

  69. Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003;3(10):781–790.

    PubMed  CAS  Google Scholar 

  70. Brown MG, Fulmek S, Matsumoto K, et al: A 2-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6. Genomics 1997; 42(1):16–25.

    PubMed  CAS  Google Scholar 

  71. Hofer E, Sobanov Y, Brostjan C, Lehrach H, Duchler M: The centromeric part of the human natural killer (NK) receptor complex: lectin-like receptor genes expressed in NK, dendritic and endothelial cells. Immunol Rev 2001;181:5–19.

    PubMed  CAS  Google Scholar 

  72. Renedo M, Arce I, Montgomery K, et al: A sequenceready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics 2000;65(2):129–136.

    PubMed  CAS  Google Scholar 

  73. Lieto LD, Borrego F, You CH, Coligan JE: Human CD94 gene expression: dual promoters differing in responsiveness to IL-2 or IL-15. J Immunol 2003; 171(10):5277–5286.

    PubMed  CAS  Google Scholar 

  74. Rodriguez A, Carretero M, Glienke J, et al: Structure of the human CD94 C-type lectin gene. Immunogenetics 1998;47(4):305–309.

    PubMed  CAS  Google Scholar 

  75. Lin CW, Liu TY, Chen SU, Wang KT, Medeiros LJ, Hsu SM: CD94 1A transcripts characterize lymphoblastic lymphoma/leukemia of immature natural killer cell origin with distinct clinical features. Blood 2005;106(10):3567–3574.

    PubMed  CAS  Google Scholar 

  76. Wilhelm BT, Landry JR, Takei F, Mager DL: Transcriptional control of murine CD94 gene: differential usage of dual promoters by lymphoid cell types. J Immunol 2003;171(8):4219–4226.

    PubMed  CAS  Google Scholar 

  77. Yabe T, McSherry C, Bach FH, et al: A multigene family on human chromosome 12 encodes natural killer-cell lectins. Immunogenetics 1993;37(6):455–460.

    PubMed  CAS  Google Scholar 

  78. Plougastel B, Jones T, Trowsdale J. Genomic structure, chromosome location, and alternative splicing of the human NKG2A gene. Immunogenetics 1996;44(4):286–291.

    PubMed  CAS  Google Scholar 

  79. Plougastel B, Trowsdale J: Sequence analysis of a 62-kb region overlapping the human KLRC cluster of genes. Genomics 1998;49(2):193–199.

    PubMed  CAS  Google Scholar 

  80. Brostjan C, Sobanov Y, Glienke J, et al: The NKG2 natural killer cell receptor family: comparative analysis of promoter sequences. Genes Immun 2000;1(8):504–508.

    PubMed  CAS  Google Scholar 

  81. Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE: GATA-3 is an important transcription factor for regulating human NKG2A gene expression. J Immunol 2005;174(4):2152–2159.

    PubMed  CAS  Google Scholar 

  82. Brady J, Hayakawa Y, Smyth MJ, Nutt SL: IL-21 induces the functional maturation of murine NK cells. J Immunol 2004;172(4):2048–2058.

    PubMed  CAS  Google Scholar 

  83. Miller JS, McCullar V: Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood 2001;98(3):705–713.

    PubMed  CAS  Google Scholar 

  84. Mingari MC, Vitale C, Cantoni C, et al: Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. Eur J Immunol 1997;27(6):1374–1380.

    PubMed  CAS  Google Scholar 

  85. Sivori S, Cantoni C, Parolini S, et al: IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003;33(12):3439–3447.

    PubMed  CAS  Google Scholar 

  86. Mori S, Jewett A, Cavalcanti M, Murakami-Mori K, Nakamura S, bonavida B: Differential regulation of human NK cell-associated gene expression following activation by IL-2, IFN-alpha and PMA/ionomycin. Int J Oncol 1998;12(5):1165–1170.

    PubMed  CAS  Google Scholar 

  87. Bertone S, Schiavetti F, Bellomo R, et al: Transforming growth factor-beta-induced expression of CD94/NKG2A inhibitory receptors in human T lymphocytes. Eur J Immunol 1999;29(1):23–29.

    PubMed  CAS  Google Scholar 

  88. Derre L, Corvaisier M, Pandolfino MC, Diez E, Jotereau F, Gervois N: Expression of CD94/NKG2-A on human T lymphocytes is induced by IL-12: implications for adoptive immunotherapy. J Immunol 2002;168(10):4864–4870.

    PubMed  CAS  Google Scholar 

  89. Galiani MD, Aguado E, Tarazona R, et al: Expression of killer inhibitory receptors on cytotoxic cells from HIV-1-infected individuals. Clin Exp Immunol 1999;115(3):472–476.

    PubMed  CAS  Google Scholar 

  90. Mingari MC, Ponte M, Bertone S, et al: HLA class I-specific inhibitory receptors in human T lymphocytes: interleukin 15-induced expression of CE94/NKG2A in superantigen- or alloantigen-activated CD8+ T cells. Proc Natl Acad Sci USA 1998;95(3):1172–1177.

    PubMed  CAS  Google Scholar 

  91. Zeddou M, Greimers R, de Valensart N, et al: Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Biochem Pharmacol 2005;70(5):714–724.

    PubMed  CAS  Google Scholar 

  92. Jabri B, Selby JM, Negulescu H, et al: TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 2002;17(4):487–499.

    PubMed  CAS  Google Scholar 

  93. Romero P, Ortega C, Palma A, Molina IJ, Pena J, Santamaria M: Expression of CD94 and NKG2 molecules on human CD4(+) T cells in response to CD3-mediated stimulation. J Leukoc Biol 2001;70(2):219–224.

    PubMed  CAS  Google Scholar 

  94. Ortega C, Romero P, Palma A, et al: Role for NKG2-A and NKG2-C surface receptors in chronic CD4+ T-cell responses. Immunol Cell Biol 2004;82(6):587–595.

    PubMed  CAS  Google Scholar 

  95. Llano M, Guma M, Ortega M, Angulo A, Lopez-Botet M: Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E expression: impact on target susceptibility to NK cell subsets. Eur J Immunol 2003;33(10):2744–2754.

    PubMed  CAS  Google Scholar 

  96. Ulbrecht M, Hofmeister V, Yuksekdag G, et al: HCMV glycoprotein US6 mediated inhibition of TAP does not affect HLA-E dependent protection of K-562 cells from NK cell lysis. Hum Immunol 2003;64(2):231–237.

    PubMed  CAS  Google Scholar 

  97. Tomasec P, Braud VM, Rickards C, et al: Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 2000;287(5455):1031.

    PubMed  CAS  Google Scholar 

  98. Ulbrecht M, Martinozzi S, Grzeschik M, et al: Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol 2000;164(10):5019–5022.

    PubMed  CAS  Google Scholar 

  99. Cerboni C, Mousavi-Jazi M, Wakiguchi H, Carbone E, Karre K, Soderstrom K: Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur J Immunol 2001;31(10):2926–2935.

    PubMed  CAS  Google Scholar 

  100. Carr WH, Little AM, Mocarski E, Parham P: NK cell-mediated lysis of autologous HCMV-infected skin fibroblasts is highly variable among NK cell clones and polyclonal NK cell lines. Clin Immunol 2002;105(2):126–140.

    PubMed  CAS  Google Scholar 

  101. Cerboni C, Mousavi-Jazi M, Linde A, et al: Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts. J Immunol 2000;164(9):4775–4782.

    PubMed  CAS  Google Scholar 

  102. Leong CC, Chapman TL, Bjorkman PJ, et al: Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J Exp Med 1998;187(10):1681–1687.

    PubMed  CAS  Google Scholar 

  103. Wang EC, McSharry B, Retiere C, et al: UL 40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci USA 2002;99(11):7570–7575.

    PubMed  CAS  Google Scholar 

  104. Falk CS, Mach M, Schendel DJ, Weiss EH, Hilgert I, Hahn G: NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. J Immunol 2002;169(6):3257–3266.

    PubMed  CAS  Google Scholar 

  105. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004;104(12):3664–3671.

    PubMed  CAS  Google Scholar 

  106. Guma M, Budt M, Saez A, et al: Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 2006; 107(9):3624–3631.

    PubMed  CAS  Google Scholar 

  107. Cohen GB, Gandhi RT, Davis DM, et al: The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 1999;10(6):661–671.

    PubMed  CAS  Google Scholar 

  108. Nattermann J, Nischalke HD, Hofmeister V, et al: HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells. Antivir Ther 2005;10(1):95–107.

    PubMed  CAS  Google Scholar 

  109. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998;391(6665):397–401.

    PubMed  CAS  Google Scholar 

  110. Williams M, Roeth JF, Kasper MR, Fleis RI, Przybycin CG, Collins KL. Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002;76(23):12173–12184.

    PubMed  CAS  Google Scholar 

  111. Fauci AS, Mavilio D, Kottilil S: NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 2005;5(11):835–843.

    PubMed  CAS  Google Scholar 

  112. Mavilio D, Benjamin J, Daucher M, et al: Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci USA 2003;100(25):15011–15016.

    PubMed  CAS  Google Scholar 

  113. Mela CM, Burton CT, Imami N, et al: Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. Aids 2005;19(16):1761–1769.

    PubMed  CAS  Google Scholar 

  114. Andre P, Brunet C, Guia S, et al: Differential regulation of killer cell Ig-like receptors and CD94 lectin-like dimers on NK and T lymphocytes from HIV-1-infected individuals. Eur J Immunol 1999;29(4):1076–1085.

    PubMed  CAS  Google Scholar 

  115. Tarazona R, DelaRosa O, Casado JG, et al: NK-associated receptors on CD8 T cells from treatment-naive HIV-infected individuals: defective expression of CD56. Aids 2002;16(2):197–200.

    PubMed  Google Scholar 

  116. Costa P, Rusconi S, Fogli M, et al: Low expression of inhibitory natural killer receptors in CD8 cytotoxic T lymphocytes in long-term non-progressor HIV-1-infected patients. Aids 2003;17(2):257–260.

    PubMed  Google Scholar 

  117. Jinushi M, Takehara T, Tatsumi T, et al: Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J Immunol 2004;173(10):6072–6081.

    PubMed  CAS  Google Scholar 

  118. Nattermann J, Nischalke HD, Hofmeister V, et al: The HLA-A2 restricted T cell epitope HCV core 35–44 stabilizes HLA-E expression and inhibits cytolysis mediated by natural killer cells. Am J Pathol 2005;166(2):443–453.

    PubMed  CAS  Google Scholar 

  119. Gunturi A, Berg RE, Forman J: Preferential survival of CD8T and NK cells expressing high levels of CD94. J Immunol 2003;170(4):1737–1745.

    PubMed  CAS  Google Scholar 

  120. Miller JD, Peters M, Oran AE, et al: CD94/NKG2 expression does not inhibit cytotoxic function of lymphocytic choriomeningitis virus-specific CD8+ T cells. J Immunol 2002;169(2):693–701.

    PubMed  CAS  Google Scholar 

  121. Wojtasiak M, Jones CM, Sullivan LC, Winterhalter AC, Carbone FR, Brooks AG: Persistent expression of CD94/NKG2 receptors by virus-specific CD8T cells is initiated by TCR-mediated signals. Int Immunol 2004;16(9):1333–1341.

    PubMed  CAS  Google Scholar 

  122. Moser JM, Gibbs J, Jensen PE, Lukacher AE: CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 2002;3(2):189–195.

    PubMed  CAS  Google Scholar 

  123. Masilamani M, Nguyen C, Kabat J, Borrego F, Coligan JE: CD94/NKG2A inhibits natural killer cell activation by disrupting the actin network at the immunological synapse. J Immunol 2006;177(6):3590–3596.

    PubMed  CAS  Google Scholar 

  124. Suvas S, Azkur AK, Rouse BT: Qa-1b and CD94-NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8+ T cells in the latently infected trigeminal ganglia. J Immunol 2006;176(3):1703–1711.

    PubMed  CAS  Google Scholar 

  125. Ugolini S, Arpin C, Anfossi N, et al: Involvement of inhibitory NKRs in the survival of a subset of memoryphenotype CD8+ T cells. Nat Immunol 2001;2(5):430–435.

    PubMed  CAS  Google Scholar 

  126. Speiser DE, Pittet MJ, Valmori D, et al: In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J Exp Med 1999;190(6):775–782.

    PubMed  CAS  Google Scholar 

  127. Pedersen LO, Vetter CS, Mingari MC, et al: Differential expression of inhibitory or activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. J Invest Dermatol 2002; 118(4):595–599.

    PubMed  CAS  Google Scholar 

  128. Sheu BC, Chiou SH, Lin HH, et al: Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumorinfiltrating CD8+ T lymphocytes in human cervical carcinoma. Cancer Res, 2005;65(7):2921–2929.

    PubMed  CAS  Google Scholar 

  129. Malmberg KJ, Levitsky V, Norell H, et al: IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 2002;110(10):1515–1523.

    PubMed  CAS  Google Scholar 

  130. Schleypen JS, Von Geldern M, Weiss EH, et al: Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 2003;106(6):905–912.

    PubMed  CAS  Google Scholar 

  131. Haedicke W, Ho FC, Chott A, et al: Expression of CD94/NKG2A and killer immunoglobulin-like receptors in NK cells and a subset of extranodal cytotoxic T-cell lymphomas. Blood 2000;95(11):3628–3630.

    PubMed  CAS  Google Scholar 

  132. Lin CW, Chen YH, Chuang YC, Liu TY, Hsu SM: CD94 transcripts imply a better prognosis in nasal-type extranodal NK/T-cell lymphoma. Blood 2003;102(7):2623–2631.

    PubMed  CAS  Google Scholar 

  133. Giebel S, Locatelli F, Lamparelli T, et al: Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003;102(3):814–819.

    PubMed  CAS  Google Scholar 

  134. Ruggeri L, Capanni M, Casucci M, et al: Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999;94(1):333–339.

    PubMed  CAS  Google Scholar 

  135. Ruggeri L, Capanni M, Urbani E, et al: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295(5562):2097–2100.

    PubMed  CAS  Google Scholar 

  136. Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P: Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003;101(9):3730–3740.

    PubMed  CAS  Google Scholar 

  137. Tanaka J, Tutumi Y, Zhang L, et al: Increased proportion of HLA-class-I-specific natural killer cell receptors (CD94) on peripheral blood mononuclear cells after allogeneic bone marrow transplantation. Acta Haematol 2001;105(2):89–91.

    PubMed  CAS  Google Scholar 

  138. Vitale C, Pitto A, Benvenuto F, et al: Phenotypic and functional analysis of the HLA-class I-specific inhibitory receptors of natural killer cells isolated from peripheral blood of patients undergoing bone marrow transplantation from matched unrelated donors. Hematol J 2000;1(2):136–144.

    PubMed  CAS  Google Scholar 

  139. Nguyen S, Dhedin N, Vernant JP, et al: NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005;105(10):4135–4142.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Coligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrego, F., Masilamani, M., Marusina, A.I. et al. The CD94/NKG2 family of receptors. Immunol Res 35, 263–277 (2006). https://doi.org/10.1385/IR:35:3:263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:35:3:263

Key Words

Navigation