Skip to main content
Log in

HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The chemokine receptors CCR5 and CXCR4 serve as the cellular receptors in conjunction with CD4 for HIV-1 entry and infection of target cells. Although the virus has subverted these molecules for its own use, their natural function is to respond to activation and migration signals delivered by extracellular chemokines. A principal research objective of our laboratory is to understand the consequences of virus-chemokine receptor interactions for cellular function, as well as for entry and infection. We hypothesized that CXCR4-using (X4) and CCR5-using (R5) HIV-1 strains might elicit signals through the chemokine receptors that result in aberrant function and/or regulate virus entry or postentry steps of infection. We have focused on primary human macrophages, which express both CXCR4 and CCR5, because macrophages are a principal target for HIV-1 in vivo, in appropriate macrophage activation appears to play a major role in the pathogenesis of certain sequelae of AIDS, such as HIV encephalopathy, and macrophage infection is regulated at several steps subsequent to entry in ways that are linked to envelope-receptor interactions. This review summarizes our recent findings regarding the mechanisms of chemokine-receptor signaling in macrophages, the role of viral envelope glycoproteins in eliciting macrophage signals, and how these activation pathways may participate in macrophage infection and affect cell functions apart from infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gendelman HE, Meltzer MS: Mononuclear phagocytes and the human immunodeficiency virus. Curr Opin Immunol 1989;2:414–419.

    Article  PubMed  Google Scholar 

  2. Collman R: Human immunodeficiency virus type 1 tropism for human macrophages. Pathobiology 1992;60:213–218.

    PubMed  CAS  Google Scholar 

  3. Merrill JE, Koyanagi Y, Zack J, Thomas L, Martin F, Chen IS: Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol 1992; 66:2217–2225.

    PubMed  CAS  Google Scholar 

  4. Shiratsuchi H., Johnson JL, Toossi Z, Ellner JJ: Modulation of the effector function of human monocytes for Mycobacterium avium by human immunodeficiency virus-1 envelope glycoprotein gpl20. J Clin Invest 1994;93:885–891.

    PubMed  CAS  Google Scholar 

  5. Borghi P, Fantuzzi L, Varano B, et al.: Induction of interleukin-10 by human immunodeficiency virus type 1 and its gpl20 protein in human monocytes/macrophages. J Virol 1995;69:1284–1287.

    PubMed  CAS  Google Scholar 

  6. Koziel H, Eichbaum Q, Kruskal BA, et al.: Reduced binding and phagocytosis of Pneumocystis carinii by alveolar macrophages from persons infected with HIV-1 correlates with mannose receptor down regulation. J Clin Invest 1998;102:1332–1344.

    PubMed  CAS  Google Scholar 

  7. Wahl SM, Allen JB, Gartner S, et al.: HIV-1 and its envelope glycoprotein down-regulate chemotactic ligand receptors and chemotactic function of peripheral blood monocytes. J Immunol 1989;142:3553–3559.

    PubMed  CAS  Google Scholar 

  8. Herbein G, Keshav S, Collin M, Montaner LJ, Gordon S: HIV-1 induces tumour necrosis factor and IL-1 gene expression in primary human macrophages independent of productive infection. Clin Exp Immunol 1994;95:442–449.

    Article  PubMed  CAS  Google Scholar 

  9. Wahl LM, Corcoran ML, Pyle SW, Arthur LO, Harel-Bellan A, Farrar WL: Human immunodeficiency virus glycoprotein (gpl20) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci USA 1989;86:621–625.

    Article  PubMed  CAS  Google Scholar 

  10. Kolson DL, Lavi E, Gonzalez-Scarano F: The effects of human immunodeficiency virus in the central nervous system. Adv Virus Res 1998;50:1–47.

    PubMed  CAS  Google Scholar 

  11. Lipton SA, Gendelman HE: Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome [see comments]. N Engl J Med 1995; 332:934–940.

    Article  PubMed  CAS  Google Scholar 

  12. Crowe SM: Role of macrophages in the pathogenesis of human immunodeficiency virus (HIV) infection. Aust N Z J Med 1995; 25:777–783.

    PubMed  CAS  Google Scholar 

  13. Bukrinsky MI, Nottet HS, Schmidtmayerova H, et al.: Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med 1995;181:735–745.

    Article  PubMed  CAS  Google Scholar 

  14. Gelbard HA, Nottet HS, Swindells S, et al.: Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 1994;68:4628–4635.

    PubMed  CAS  Google Scholar 

  15. Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, Kapoor V: Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. J Virol 2000;74:4110–4115.

    Article  PubMed  CAS  Google Scholar 

  16. Rucker J, Doms RW: Chemokine receptors as HIV coreceptors: implications and interactions. AIDS Res Hum Retroviruses 1998;14:S241-S246.

    PubMed  CAS  Google Scholar 

  17. Berger EA, Murphy PM, Farber JM: Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999;17:657–700.

    Article  PubMed  CAS  Google Scholar 

  18. Yi Y, Rana S, Turner JD, Gaddis N, Collman RG: CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J Virol 1998;72:772–777.

    PubMed  CAS  Google Scholar 

  19. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW: Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 1999;96:5215–5220.

    Article  PubMed  CAS  Google Scholar 

  20. Simmons G, Reeves JD, McKnight A, et al.: CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J Virol 1998;72:8453–8457.

    PubMed  CAS  Google Scholar 

  21. Yi Y, Isaacs SN, Williams DA, et al.: Role of CXCR4 in cell-cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: two distinct mechanisms of HIV-1 dual tropism. J Virol 1999;73:7117–7125.

    PubMed  CAS  Google Scholar 

  22. Edinger AL, Amedee A, Miller K, et al.: Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. Proc Natl Acad Sci USA 1997;94:4005–4010.

    Article  PubMed  CAS  Google Scholar 

  23. Kirchhoff F, Pohlmann S, Hamacher M, et al.: Simian immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified cofactor expressed in CEMx 174 cells for efficient entry. J Virol 1997;71:6509–6516.

    PubMed  CAS  Google Scholar 

  24. Chen Z, Zhou P, Ho DD, Landau NR, Marx PA: Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol 1997; 71:2705–2714.

    PubMed  CAS  Google Scholar 

  25. Mori K, Ringler DJ, Desrosiers RC: Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by Env but is not due to restricted entry. J Virol 1993;67: 2807–2814.

    PubMed  CAS  Google Scholar 

  26. Chackerian B, Long EM, Luciw PA, Overbaugh J: Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J Virol 1997;71:3932–3939.

    PubMed  CAS  Google Scholar 

  27. Arthos J, Rubbert A, Rabin RL, et al.: CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes. J Virol 2000;74:6418–6424.

    Article  PubMed  CAS  Google Scholar 

  28. Horuk R: Chemokine receptors and HIV-1: the fusion of two major research fields. Immunol Today 1999;20:89–94.

    Article  PubMed  CAS  Google Scholar 

  29. Locati M, Murphy PM: Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu Rev Med 1999;50:425–440.

    Article  PubMed  CAS  Google Scholar 

  30. Hamm HE: The many faces of G protein signaling. J Biol Chem 1998;273:669–672.

    Article  PubMed  CAS  Google Scholar 

  31. Bacon KB: Analysis of signal transduction following lymphocyte activation by chemokines. Methods Enzymol 1997;288:340–361.

    PubMed  CAS  Google Scholar 

  32. Kuang Y, Wu Y, Smrcka A, Jiang H, Wu D: Identification of a phospholipase C β2 region that interacts with Gbeta-gamma. Proc Natl Acad Sci USA 1996;93:2964–2968.

    Article  PubMed  CAS  Google Scholar 

  33. Jan LY, Jan YN: Receptor-regulated ionchannels. Curr Opin Cell Biol 1997;9:155–160.

    Article  PubMed  CAS  Google Scholar 

  34. Gosling J, Monteclaro FS, Atchison RE, Arai H, Tsou CL, Goldsmith MA, Charo IF: Molecular uncoupling of C−C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proc Natl Acad Sci USA 1997;94:5061–5066.

    Article  PubMed  CAS  Google Scholar 

  35. Ford CE, Skiba NP, Bae H, et al.: Molecular basis for interactions of G protein βγ subunits with effectors. Science 1998;280:1271–1274.

    Article  PubMed  CAS  Google Scholar 

  36. Brown AM, Birnbaumer L: Ionic channels and their regulation by G protein subunits. Annu Rev Physiol 1990;52:197–213.

    Article  PubMed  CAS  Google Scholar 

  37. Wickman K, Clapham DE: Ion channel regulation by G proteins. Physiol Rev 1995;75:865–885.

    PubMed  CAS  Google Scholar 

  38. Daaka Y, Luttrell LM, Lefkowitz RJ: Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Article  PubMed  CAS  Google Scholar 

  39. Arai H, Tsou CL, Charo IF: Chemotaxis in a lymphocyte cell line transfected with C−C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Gαi-coupled receptors. Proc Natl Acad Sci USA 1997;94:14,495–14,499.

    CAS  Google Scholar 

  40. Kuang Y., Wu Y, Jiang H, Wu D: Selective G protein coupling by C−C chemokine receptors. J Biol Chem 1996;271:3975–3978.

    Article  PubMed  CAS  Google Scholar 

  41. Weissman D, Rabin RL, Arthos J, et al.: Macro phage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 1997;389:981–985.

    Article  PubMed  CAS  Google Scholar 

  42. Davis CB, Dikic I, Unutmaz D, et al.: Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 1997;186:1793–1798.

    Article  PubMed  CAS  Google Scholar 

  43. Liu QH, Williams DA, McManus C, et al.: HIV-1 gp1 20 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation. Proc Natl Acad Sci USA 2000; 97:4832–4837.

    Article  PubMed  CAS  Google Scholar 

  44. Cicala C, Arthos J, Rubbert A, Selig S, Wildt K, Cohen OJ, Fauci AS: HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells. Proc Natl Acad Sci USA 2000;97:1178–1183.

    Article  PubMed  CAS  Google Scholar 

  45. Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE: Beta chemokine receptor CCR5 signals through SHP1 SHP2 and Syk. J Biol Chem 2000.

  46. Popik W, Hesselgesser JE, Pitha PM: Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol 1998;72:6406–6413.

    PubMed  CAS  Google Scholar 

  47. Popik W, Pitha PM: Early activation of mitogen-activated protein kinase kinase, extracellularsignal-regulated kinase, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virology 1998;252:1210–217.

    Article  Google Scholar 

  48. Dairaghi DJ, Soo KS, Oldham ER, Premack BA, Kitamura T, Bacon KB, Schall TJ: RANTES-induced T cell activation correlates with CD3 expression. J Immunol 1998;160:426–433.

    PubMed  CAS  Google Scholar 

  49. Lev S, Moreno H, Martinez R, et al.: Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 1995;376:737–745.

    Article  PubMed  CAS  Google Scholar 

  50. Zhao J, Ma L, Wu YL, Wang P, Hu W, Pei G: Chemokine receptor CCR5 functionally couples to inhibitory G proteins and undergoes desensitization. J Cell Biochem 1998;71:36–45.

    Article  PubMed  CAS  Google Scholar 

  51. Vicente-Manzanares M, Rey M, Jones DR, et al.: Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis. J Immunol 1999;163:40001–4012.

    Google Scholar 

  52. Sotsios Y, Whittaker GC, Westwick J, Ward SG: The CXC Chemokine Stromal Cell-Derived Factor Activatesa Gi-Coupled Phosphoinositide 3-Kinase in T lymphocytes. J Immunol 1999;163:5954–5963.

    PubMed  CAS  Google Scholar 

  53. Gallin EK: Ion channels in Leukocytes. Physiol Rev 1991;71:775–811.

    PubMed  CAS  Google Scholar 

  54. Eder C: Ion channels in microglia (brain macrophages). Am J Physiol 1998;275:C327-C342.

    PubMed  CAS  Google Scholar 

  55. DeCoursey TE, Cherny VV: Voltage-activated proton currents in human THP-1 monocytes. J Membr Biol 1996;152:131–140.

    Article  PubMed  CAS  Google Scholar 

  56. Nelson DJ, Jacobs ER, Tang JM, Zeller JM, Bone RC: Immunoglobulin G-induced single ionic channels in human alveolar macrophage membranes. J Clin Invest 1985;76:500–507.

    Article  PubMed  CAS  Google Scholar 

  57. Ince C, Coremans JM, Ypey DL, Leijh PC, Verveen AA, Van Furth R: Phagocytosis by human macrophages is accompanied by changes in ionic channel currents. J Cell Biol 1988;106:1873–1878.

    Article  PubMed  CAS  Google Scholar 

  58. Brown H, Kozlowski R, Perry H: The importance of ion channels for macrophage and microglial activation in vitro. Glia 1998;22:94–97.

    Article  PubMed  CAS  Google Scholar 

  59. Chiozzi P, Sanz JM, Ferrari D, et al.: Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2X7 receptor. J Cell Biol 1997;138:697–706.

    Article  PubMed  CAS  Google Scholar 

  60. Ferrari DF, Chiozzi P, Falzoni S, Susino MD, Melchiorri L, Baricordi OR, Di Virgilio F: Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J Immunol 1997;159:1451–1458.

    PubMed  CAS  Google Scholar 

  61. Denlinger LC, Fisette PL, Garis KA, et al.: Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem 1996;271:337–342.

    Article  PubMed  CAS  Google Scholar 

  62. Raddassi K, Berthon B, Petit JF, Lemaire G: Role of calcium in the activation of mouse peritoneal macrophages: induction of NO synthase by calcium ionophores and thapsigargin. Cell Immunol 1994;153:443–455.

    Article  PubMed  CAS  Google Scholar 

  63. Watanabe N, Suzuki J, Kobayashi Y: Role of calcium in tumor necrosis factor-alpha production by activated macrophages. J Biochem (Tokyo) 1996;120:1190–1195.

    CAS  Google Scholar 

  64. Lee B, Sharron M, Blanpain C, et al.: Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 1999;274:9617–9626.

    Article  PubMed  CAS  Google Scholar 

  65. Lyengar S, Hildreth JE, Schwartz DH: Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 1998;72:5251–5255.

    Google Scholar 

  66. Dimitrov DS, Norwood D, Stantchev TS, Feng Y, Xiao X, Broder CC: A mechanism of resistance to HIV-1 entry: inefficient interactions of CXCR4 with CD4 and gpl 20 in macrophages. Virology 1999;259:1–6.

    Article  PubMed  CAS  Google Scholar 

  67. Lapham CK, Zaitseva MB, Lee S, Romanstseva T, Golding H: Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properties of CXCR4 and CCR5. Nat Med 1999;5:303–308.

    Article  PubMed  CAS  Google Scholar 

  68. Roullet E: Opportunistic infections of the central nervous system during HIV-1 in fection (emphasis on cytomegalovirus disease). J Neurol 1999;246:237–243.

    Article  PubMed  CAS  Google Scholar 

  69. Fenton MJ: Macrophages and tuberculosis. Curr Opin Hematol 1998;5:72–78.

    Article  PubMed  CAS  Google Scholar 

  70. Chaturvedi S, Newman SL: Modulation of the effector function of human macrophages for Histoplasma capsulatum by HIV-1. Role of the envelope glycoprotein gpl 20. J Clin Invest 1997; 100;1465–1474.

    PubMed  CAS  Google Scholar 

  71. Pietrella D, Monari C, Retini C, Palazzetti B, Bistoni F, Vecchiarelli A. Human immunodeficiency virus type 1 envelope protein gpl 20 impairs intracellular antifungal mechanisms in human monocytes. J Infect Dis 1998; 177:347–354.

    Article  PubMed  CAS  Google Scholar 

  72. Crowe SM, Vardaxis NJ, Kent SJ, Maerz AL, Hewish MJ, McGrath MS, Mills J: HIV infection of monocyte-derived macrophages in vitro reduces phagocytosis of Candida albicans. J Leukoc Biol 1994;56:318–327.

    PubMed  CAS  Google Scholar 

  73. Sibille Y, Reynolds HY: Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 1990; 141:471–501.

    PubMed  CAS  Google Scholar 

  74. Koka P, He K, Zack JA, et al.: Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain. JExp Med 1995;182:941–951.

    Article  CAS  Google Scholar 

  75. Agostini C, Sancetta R, Cerutti A, Semenzato G. Alveolar macrophages as a cell source of cytokine hyperproduction in HIV-related interstitial lung disease. J Leukoc Biol 1995;58:495–500.

    PubMed  CAS  Google Scholar 

  76. Agostini C, Zambello R, Trentin L, et al.: Alveolar macrophages from patients with AIDS and AIDS-related complex constitutively synthesize and release tumor necrosis factor alpha. Am Rev Respir Dis 1991;144:195–201.

    PubMed  CAS  Google Scholar 

  77. Twigg HL III, Lipscomb MF, Yoffe B, Barbaro DJ, Weissler JC: Enhanced accessory cell function by alveolar macrophages from patients infected with the human immunodeficiency virus: potential role for depletion of CD4+ cells in the lung. Am J Respir Cell Mol Biol 1989;1:391–400.

    PubMed  CAS  Google Scholar 

  78. Gessani S, Puddu P, Varano B, Borghi P, Conti L, Fantuzzi L, Belardelli F: Induction of beta interferon by human immunodeficiency virus type 1 and its gp1 20 protein in human monocytes-macrophages: role of β-interferon in restriction of virus replication. J Virol 1994;68:1983–1986.

    PubMed  CAS  Google Scholar 

  79. Capobianchi MR, Barresi C, Borghi P, et al.: Human immunodeficiency virus type 1 gpl 20 stimulates cytomegalovirus replication in monocytes: possible role of endogenous interleukin-8. J Virol 1997;71:1591–1597.

    PubMed  CAS  Google Scholar 

  80. Moorjani H, Craddock BP, Morrison SA, Steigbigel RT: Impairment of phagosome-lysosome fusion in HIV-1-infected macrophages. J Acquir Immune Defic Syndr Hum Retrovirol 1996;13:18–22.

    Article  PubMed  CAS  Google Scholar 

  81. Nottet HS, Jett M, Flanagan CR, et al.: A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol 1995;154:3567–3581.

    PubMed  CAS  Google Scholar 

  82. Herbein G, Mahlknecht U, Batliwalla F, et al.: Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gpl 20 with chemokine receptor CXCR4. Nature 1998;395:189–194.

    Article  PubMed  CAS  Google Scholar 

  83. Smyth RJ, Yi Y, Singh A, Collman RG: Determinants of entry cofactor utilization and tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol 1998;72:4478–4484.

    PubMed  CAS  Google Scholar 

  84. Guntermann C, Murphy BJ, Zheng R, Qureshi A, Eagles PA, Nye KE: Human immunodeficiency virus-1 infection requires pertussis toxin sensitive G-protein-coupled signalling and mediatesc AMP down-regulation. Biochem Biophys Res Commun 1999;256:429–435.

    Article  PubMed  CAS  Google Scholar 

  85. Alfano M, Schmidtmayerova H, Amella CA, Pushkarsky T, Bukrinsky M: The β-oligomer of pertussis toxin deactivates CC chemokine receptor 5 and blocks entry of M-tropic HIV-1 strains. J Exp Med 1999;190:597–605.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Freedman VMD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, B.D., Liu, QH., Del Corno, M. et al. HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages. Immunol Res 27, 261–276 (2003). https://doi.org/10.1385/IR:27:2-3:261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:27:2-3:261

Key Words

Navigation