Skip to main content
Log in

Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats

Influence of maternal Mg2+ supplementation

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Fetal alcohol syndrome (FAS) is often associated with cardiac hypertrophy and impaired ventricular function in a manner similar to postnatal chronic alcohol ingestion. Chronic alcoholism has been shown to lead to hypomagnesemia, and dietary Mg2+ supplementation was shown to ameliorate ethanol-induced cardiovascular dysfunction such as hypertension. However, the role of gestational Mg2+ supplementation on FAS-related cardiac dysfunction is unknown. This study was conducted to examine the influence of gestational dietary Mg2+ supplementation on prenatal ethanol exposure-induced cardiac contractile response at the ventricular myocyte level. Timed-pregnancy female rats were fed from gestation day 2 with liquid diets containing 0.13 g/L Mg2+ supplemented with ethanol (36%) or additional Mg2+ (0.52 g/L), or both. The pups were maintained on standard rat chow through adulthood, and ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an IonOptix soft-edge system, and intracellular Ca2+ transients were measured as changes in fura-2 fluorescence intensity (ΔFFI). Offspring from all groups displayed similar growth curves. Myocytes from the ethanol group exhibited reduced cell length, enhanced peak shortening (PS), and shortened time to 90% relengthening (TR90) associated with a normal ΔFFI and time to PS (TPS). Mg2+ reverted the prenatal ethanol-induced alteration in PS and maximal velocity of relengthening. However, it shortened TPS and TR90, and altered the ΔFFI, as well as Ca2+ decay rate by itself. Additionally, myocytes from the ethanol group exhibited impaired responsiveness to increased extracellular Ca2+ or stimulating frequency, which were restored by gestational Mg2+ supplementation. These data suggest that although gestational Mg2+ supplementation may be beneficial to certain cardiac contractile dysfunctions in offspring of alcoholic mothers, caution must be taken, as Mg2+ supplementation affects cell mechanics itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S.S., Levinson, G.E., Fiore, J.J., and Regan, T.J. (1980). Spectrum of heart muscle abnormalities related to alcoholism. Clin. Cardiol. 3:335–341.

    PubMed  CAS  Google Scholar 

  2. Regan, T.J. (1990). Alcohol and the cardiovascular system. JAMA 264:337–381.

    Article  Google Scholar 

  3. Thomas, A.P., Rozanski, D.C., and Rubin, E. (1994). Effects of ethanol on the contractile function of the heart: a review. Alcohol. Clin. Exp. Res. 18:121–131.

    Article  PubMed  CAS  Google Scholar 

  4. Ni, Y., Feng-Chen, K.C., and Hsu, L. (1992). A tissue culture model for studying ethanol toxicity on embryonic heart cells. Cell Biol. Toxicol. 8:1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Fuseler, J.W. (1993). Maternal ethanol consumption induces transient compensatory hyperplasia of developing cardiac tissue in the neonatal rat. Alcohol Alcohol. 28:657–666.

    PubMed  CAS  Google Scholar 

  6. Syslak, P.H., Nathaniel, E.J., Novak, C., and Burton, L. (1994). Fetal alcohol effects on the postnatal development of the rat myocardium: an ultrastructural and morphometric analysis. Exp. Mol. Pathol. 60:158–172.

    Article  PubMed  CAS  Google Scholar 

  7. Nyquist-Beattie, C. and Freter, M. (1988). Cardiac mitochondrial abnormalities in a mouse model of the fetal alcohol syndrome. Alcohol. Clin. Exp. Res. 12:264–267.

    Article  Google Scholar 

  8. Staley, N.A. and Tobin, J.D. Jr. (1991). Reversible effects of ethanol in utero on cardiac sarcoplasmic reticulum of guinea pig offspring. Cardiovasc. Res. 25:27–30.

    PubMed  CAS  Google Scholar 

  9. Altura, B.M., Zhang, A., Cheng, T.P., and Altura, B.T. (1996). Exposure of piglet coronary arterial muscle cells to low alcohol results in elevation of intracellular free calcium: relevance to fetal alcohol syndrome. Eur. J. Pharm. 314:R9-R11.

    Article  CAS  Google Scholar 

  10. Brilla, C.G., Scheer, C., and Rupp, H. (1998). Angiotensin II and intracellular calcium of adult cardiac fibroblasts. J. Mol. Cell Cardiol. 301:237–1246.

    Google Scholar 

  11. Hsieh, S.T., Sano, H., Saito, K., Kubota, Y., and Yokoyama, M. (1992). Magnesium supplementation prevents the development of alcohol-induced hypertension. Hypertension 19:175–182.

    PubMed  CAS  Google Scholar 

  12. Brown, R.A., Crawford, M., Natavio, M., Petrovski, P., and Ren, J. (1998). Dietary magnesium supplementation attenuates ethanol-induced myocardial dysfunction. Alcohol. Clin. Exp. Res. 22:2062–2072.

    Article  PubMed  CAS  Google Scholar 

  13. DeJonge, M.H. and Zachman, R.D. (1995). The effect of maternal ingestion on fetal rat heart vitamin A: a model for fetal alcohol syndrome. Pediatr. Res. 37:418–423.

    Article  PubMed  CAS  Google Scholar 

  14. Colton, C.A., Sneli-Callanan, J., and Chernyshev, O.N. (1998). Ethanol induced changes in superoxide anion and nitric oxide in cultured microglia. Alcohol. Clin. Exp. Res. 22:710–716.

    PubMed  CAS  Google Scholar 

  15. Miller, D.J. and MacFarlane, N.G. (1995). Intracellular effects of free radicals and reactive oxygen species in cardiac muscle. J. Hum. Hypertens. 9:465–473.

    PubMed  CAS  Google Scholar 

  16. Ferrari, R., Agnoletti, L., Comini, L., Gaia, G., Bachetti, T., Cargnoni, A., et al. (1998). Oxidative stress during myocardial ischaemia and heart failure. Eur. Heart J. 19:B2-B11.

    PubMed  CAS  Google Scholar 

  17. Altura, B.M. and Altura, B.T. (1987). Peripheral and cerebrovascular actions of ethanol, acetaldehyde and acetate: relationship to divalent cations. Alcohol. Clin. Exp. Res. 11:99–111.

    Article  PubMed  CAS  Google Scholar 

  18. Posner, P., Baker, S.P., Carpentier, R.G., and Hennemann, W.W. (1987). Effect of long-term ethanol consumption on the rat ventricle. Alcohol Drug Res. 7:371–381.

    PubMed  CAS  Google Scholar 

  19. Ren, J. and Brown, R.A. (2000). Influence of chronic alcohol ingestion on acetaldehyde-induced depression of cardiac contractile function. Alcohol Alcohol. 35:554–560.

    PubMed  CAS  Google Scholar 

  20. Nickola, M.W., Wold, L.E., Colligan, P.B., Wang, G-J., Samson, W.K., and Ren, J. (2000). Leptin attenuates cardiac contraction of rat ventricular myocytes: role of nitric oxide. Hypertension 36:501–505.

    PubMed  CAS  Google Scholar 

  21. Danziger, R.S., Sakai, M., Capogrossi, M.C., Spurgeon, H.A., Hansford, R.G., and Lakatta, E.G. (1991). Ethanol acutely and reversibly suppresses excitation-contraction coupling in cardiac myocytes. Circ. Res. 68:1660–1668.

    PubMed  CAS  Google Scholar 

  22. Loser, H., Pfefferkorn, J.R., and Themann, H. (1992). Alcohol in pregnancy and fetal heart damage. Klin. Padiatr. 204:335–339.

    Article  PubMed  CAS  Google Scholar 

  23. Thomas, A.P., Rozanski, D.J., Renard, D.C., and Rubin, E. (1994). Effects of ethanol on the contractile function of the heart: a review. Alcohol. Clin. Exp. Res. 18:121–131.

    Article  PubMed  CAS  Google Scholar 

  24. Figueredo, V.M., Chang, K.C., Baker, A.J., and Camacho, S.A. (1998). Chronic alcohol-induced changes in cardiac contractility are not due to changes in the cystolic Ca2+ transient. Am. J. Physiol. 275:H122-H130.

    PubMed  CAS  Google Scholar 

  25. Guarnieri, T. and Lakatta, E.G. (1990). Mechanism of myocardial contractile depression by clinical concentration of ethanol. A study in ferret papillary muscles. J. Clin. Invest. 85:1462–1467.

    Article  PubMed  CAS  Google Scholar 

  26. Adickes, E.D., Mollner, T.J., and Makoid, M.C. (1993). Teratogenic effects of ethanol during hyperplastic growth in cardiac myocyte cultures. Alcohol. Clin. Exp. Res. 17: 988–992.

    PubMed  CAS  Google Scholar 

  27. Rajiyah, G., Argarwal, R., Avendano, G., Lyons, M., Soni, B., and Regan, T.J. (1996). Influence of nicotine on myocardial stiffness and fibrosis during chronic ethanol use. Alcohol. Clin. Exp. Res. 20:985–989.

    Article  PubMed  CAS  Google Scholar 

  28. Al-Abed, Y., Mitsuhashi, T., Li, H., Lawson, J.A., FitzGerald, G.A., Founds, H., et al. (1999). Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol. Proc. Natl. Acad. Sci. USA 96:2385–2390.

    Article  PubMed  CAS  Google Scholar 

  29. Altura, B.M. and Altura, B.T. (1984). Magnesium, electrolyte transport and coronary vascular tone. Drugs 28:120–142.

    PubMed  CAS  Google Scholar 

  30. Flink, E.B. (1986). Magnesium deficiency in alcoholism. Alcohol. Clin. Exp. Res. 10:590–594.

    PubMed  CAS  Google Scholar 

  31. Altura, B.M. and Altura, B.T. (1985). New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II. Experimental Aspects. Magnesium 4:245–271.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wold, L.E., Norby, F.L., Hintz, K.K. et al. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats. Cardiovasc Toxicol 1, 215–224 (2001). https://doi.org/10.1385/CT:1:3:215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:1:3:215

Key words

Navigation