Skip to main content
Log in

Location-dependent photogeneration of calcium waves in HeLa cells

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The calcium ion (Ca2+) concentrations in a cell are responsible for the control of vital cellular functions and have been widely studied as a means to investigate and control cell activities. Here, we demonstrate Ca2+ wave generation in HeLa cells by femtosecond laser irradiation and show unexpected properties of the Ca2+ release and propagation. When the laser was focused in the cell cytoplasm, Ca2+ release was independent of both external Ca2+ influx and the phosphoinositide-phospholipase C (PLC) signaling pathway. The nucleus was not a susceptible target for laser-induced Ca2+ release, whereas irradiation of the plasma membrane produced evidence of transient poration, through which the extracellular solution could enter the cell. By chelating extracellular Ca2+, we found that laser-induced influx of ethylene glycol tetra-acetic acid (EGTA) can compete with calcium-induced calcium release and significantly delay or suppress the onset of the Ca2+ wave in the target cell. Intercellular Ca2+ propagation was adenosine triphosphate-dependent and could be observed even when the target cell cytosolic Ca2+ rise was suppressed by influx of EGTA. The irradiation effect on overall cell viability was also tested and found to be low (85% at 6h after irradiation by 60 mW average power). Laser-induced Ca2+ waves can be reliably generated by controlling the exposure and focal position and do not require the presence of caged Ca2+. The technique has the potential to replace other methods of Ca2+ stimulation, which either require additional caged molecules in the cell or do not have an interaction that is as well localized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M. J., Lipp, P., and Bootman, M. D. (1998) Calcium—a life and death signal. Nature 395, 645–648.

    Article  PubMed  CAS  Google Scholar 

  2. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signaling. Nat. Rev. Mol. 1, 11–21.

    Article  CAS  Google Scholar 

  3. Cheng, H., Lederer, W. J., and Cannell, M. B. (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Article  PubMed  CAS  Google Scholar 

  4. Bootman, M. D., Berridge, M. J., and Lipp, P. (1997) Cooking with calcium; the recipes for composing global signals from elementary events. Cell 91, 367–373.

    Article  PubMed  CAS  Google Scholar 

  5. Paemeleire, K., Martin, P. E. M., Coleman, S. L., et al. (2000) Intercellular calcium waves in HeLa cells expressing GFP-labeled Connexin 43, 32, or 26. Mol. Biol. Cell 11, 1815–1827.

    PubMed  CAS  Google Scholar 

  6. Fauquier, T., Guérineau, N. C., McKinney, R. A., Bauer, K., and Mollard, P. (2001) Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc. Natl. Acad. Sci. USA 98, 8891–8896.

    Article  PubMed  CAS  Google Scholar 

  7. Jacob, R., Merritt, J. E., Hallam, J. E., and Rink, T. J. (1998) Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335, 40–45.

    Article  Google Scholar 

  8. Parpura, V., and Haydon, P. G. (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl. Acad. Sci. USA 97, 8629–8634.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, E. B., Shear, J. B., Adams, S. R., Tsien, R. Y., and Webb, W. W. (1999) Photolysis of caged calcium in femooliter volumes using two-photon excitation. Biophys. J 76, 489–499.

    PubMed  CAS  Google Scholar 

  10. Lipp, P., and Niggli, E. (1998) Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes. J. Physiol. 508, 801–809.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, N. I., Fujita, K., Kaneko, T. et al. (2001) Generation of calcium waves in living cells by pulsed-laser-induced photodisruption. Appl. Phys. Lett. 79, 1208–1210.

    Article  CAS  Google Scholar 

  12. König, K., Riemann, I., Fischer, P., and Halbhuber, K. J. (1999) Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell. Mol. Biol. 45, 195–201.

    PubMed  Google Scholar 

  13. Yanik, M. F., Cinar, H., Cinar, H. N., Chisholm, A. D., Jin, Y., and Ben-Yakar, A. (2004) Functional regeneration after laser axotomy. Nature 432, 882.

    Article  CAS  Google Scholar 

  14. Yeh, C. J., Hsi, B. L., and Faulk, W. P. (1981) Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies. J. Immunol. Methods. 43, 269–275.

    Article  PubMed  CAS  Google Scholar 

  15. Boutonnat, J., Barbier, M., Muirhead, K., Mousseau, M., Ronot, X., and Seigneurin, D. (1999) Optimized fluorescent probe combinations for evaluation of proliferation and necrosis in anthracycline-treated leukaemic cell lines. Cell Prolif. 32, 203–213.

    Article  PubMed  CAS  Google Scholar 

  16. Goeppert-Meyer, M. (1931) Ueber Elementarakte mit zwei Quantenspruengen. Ann. Phys. 9, 273–295.

    Google Scholar 

  17. Vogel, A., and Venugopalan, V. (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644.

    Article  PubMed  CAS  Google Scholar 

  18. Schönle, A., and Hell, S. W. (1998) Heating by absorption in the focus of an objective lens. Opt. Lett. 23, 325–327.

    PubMed  Google Scholar 

  19. Denk, W., Piston, D. W., and Webb, W. W. (1995). In Two-Photon Molecular Excitation in Laser Scanning Microscopy (Pawley, J. B. ed). Plenum, New York, pp. 445–458.

    Google Scholar 

  20. Chrico, G., Cannone, F., Baldini, G., and Diaspro, A. (2003) Two-photon thermal bleaching of single fluorescent molecules. Biophys. J. 84, 588–598.

    Article  Google Scholar 

  21. Xu, C., Williams, R. M., Zipfel, W., and Webb, W. W. (1996) Multiphoton excitation cross-sections of molecular fluorophores. Bioimaging 4, 198–207.

    Article  CAS  Google Scholar 

  22. Smith, N. I., Fujita, K., Nakamura, O., and Kawata, S. (2001) Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses. Appl. Phys. Lett. 78, 999–1001.

    Article  CAS  Google Scholar 

  23. Tirlapur, U. K., König, K., Peuckert, C., Krieg, R., and Halbhuber, K. J. (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp. Cell Res. 263, 88–97.

    Article  PubMed  CAS  Google Scholar 

  24. Jornot, L., Maechler, P., Wollheim, C. B., and Junod, A. F. (1999) Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells implication of the Ca2+/Na+ exchanger. J. Cell. Sci. 112, 1013–1022.

    PubMed  CAS  Google Scholar 

  25. Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling, Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  26. Barrero, M. J., Montero, M., and Alvarez, J. (1997) Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. A comparative study. J. Biol. Chem. 272, 27694–27699.

    Article  PubMed  CAS  Google Scholar 

  27. Missiaen, L., De Smedt, H., Parys, J. B., et al. (1996) Kinetics of the non-specific calcium leak from non-mitochondrial calcium stores in permeabilized A7r5 cells. Biochem. J. 317, 849–853.

    PubMed  CAS  Google Scholar 

  28. Lipp, P., Thomas, D., Berridge, M. J., and Bootman, M. D. (1997) Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J. 16, 7166–7173.

    Article  PubMed  CAS  Google Scholar 

  29. Tirlapur, U. K., and Konig, K. (2002) Targeted transfection by femtosecond laser. Nature 418, 290–291.

    Article  PubMed  CAS  Google Scholar 

  30. Okuda, A., Furuya, K., and Kiyohara, T. (2003) ATP-induced calcium oscillations and change of P2Y subtypes with culture conditions in HeLa cells. Cell Biochem. Funct. 21, 61–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwanaga, S., Kaneko, T., Fujita, K. et al. Location-dependent photogeneration of calcium waves in HeLa cells. Cell Biochem Biophys 45, 167–176 (2006). https://doi.org/10.1385/CBB:45:2:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:2:167

Index Entries

Navigation