Skip to main content
Log in

Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells

Radioligand binding, confocal microscopy, and mathematical simulations

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cells grown in monolayer culture offer a convenient system for binding and other experiments under conditions that preserve the complexity of the living state. Kinetics experiments, however, may be distorted by the time course of drug penetration into even so simple a “tissue” as the monolayer. The impediments include unstirred layers both above and between the cells, the congregation of receptors within the confined space between cells, and nonspecific binding to membrane components. The contributions of these factors were investigated in cultures of Chinese hamster ovary (CHO) cells either nontransfected or stably transfected with μ opioid receptors. The dissociation of [3H]naloxone was four times faster under displacement than under infinite dilution conditions, clearly demonstrating the “retention effect” of receptors confined in space. Even the penetration of this ligand between nontransfected cells showed salient delays with respect to diffusion into a slab, indicating that nonspecific, low-affinity binding to membrane components was arresting its progress. The optical sectioning capabilities of confocal microscopy demonstrated that the kinetics of two fluorescent antagonists depended on the vertical plane, providing direct evidence for slowed diffusion down a single cell depth. Modeling shows that kinetic errors increase with receptor density, forward rate constant, and the thickness of the unstirred layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porzig, H. (1982) Are there differences in the β-receptor-adenylate cyclase systems of fragmented membranes and living cells? Trends Pharmacol. Sci. 3, 75–78.

    Article  CAS  Google Scholar 

  2. Toll, L. (1995) Intact cell binding and the relation to opioid activities in SH-SY5Y cells. J. Pharmacol. Exp. Ther. 273, 721–727.

    PubMed  CAS  Google Scholar 

  3. Nicholson, C., Phillips, J. M., and Gardner-Medwin, A. R. (1979) Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res. 169, 580–584.

    Article  PubMed  CAS  Google Scholar 

  4. Nicholson, C., Chen, K. C., Hrabetova, S., and Tao, L. (2000) Diffusion of molecules in brain extracellular space: theory and experiment. Prog. Brain Res. 125, 129–154.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, K. C., and Nicholson, C. (2000) Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc. Natl. Acad. Sci. U.S.A. 97, 8306–8311.

    Article  PubMed  CAS  Google Scholar 

  6. DeLisi, C. (1981) The effect of cell size and receptor density on ligand-receptor reaction rate constants. Mol. Immunol. 18, 507–511.

    Article  PubMed  CAS  Google Scholar 

  7. Abbott, A. J. and Nelsestuen, G. L. (1988) The collisional limit: an important consideration for membrane-associated enzymes and receptors. FASEB J. 2, 2858–2866.

    PubMed  CAS  Google Scholar 

  8. Goldstein, B., and Dembo, M. (1995) Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys. J. 68, 1222–1230.

    PubMed  CAS  Google Scholar 

  9. Berg, J. C., and Purcell, E. M. (1977) Physics of chemoreception. Biophys. J. 20, 193–219.

    PubMed  CAS  Google Scholar 

  10. DeLisi, C. (1980) The biophysics of ligand-receptor interactions. Q. Rev. Biophys. 13, 201–230.

    PubMed  CAS  Google Scholar 

  11. Shoup, D., and Szabo, A. (1982) Role of diffusion in ligand binding to macromolecules and cell-bound receptors Biophys. J. 40, 33–39.

    PubMed  CAS  Google Scholar 

  12. Zwanzig, R. (1990) Diffusion-controlled ligand binding to spheres partially covered by receptors: an effective medium treatment. Proc. Natl. Acad. Sci. U.S.A. 87, 5856–5857.

    Article  PubMed  CAS  Google Scholar 

  13. Dainty, J., and House, C. R. (1966) Unstirred layers in frog skin. J. Physiol. 182, 66–78.

    PubMed  CAS  Google Scholar 

  14. Pedley, T. J. (1983) Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q. Rev. Biophys. 16, 115–150.

    Article  PubMed  CAS  Google Scholar 

  15. Barry, P. H., and Diamond, J. M. (1984) Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872.

    PubMed  CAS  Google Scholar 

  16. Silhavy, T. J., Szmelcman, S., Boos, W., and Schwartz, M. (1975) On the significance of the retention of ligand by protein. Proc. Natl. Acad. Sci. U.S.A. 72, 2120–2124.

    Article  PubMed  CAS  Google Scholar 

  17. Rademaker, B., Kramer, K., van Ingen, H., Kranendonk, M., and Timmerman, H. (1985) Non-specific binding of the fluorescent beta-adrenergic receptor probe alprenolol-NBD. J. Recept. Res. 5, 121–131.

    PubMed  CAS  Google Scholar 

  18. Wurm, F. M. (1990) Integration, amplification and stability of plasmid sequences in CHO cell cultures. Biologicals 18, 159–164.

    Article  PubMed  CAS  Google Scholar 

  19. Spivak, C. E., and Beglan, C. L. (2004) Kinetics of β-funaltrexamine binding to wild-type and mutant μ-opioid receptors expressed in Chinese hamster ovary cells. Synapse 52, 123–135.

    Article  PubMed  CAS  Google Scholar 

  20. Krnjevic, K. and Mitchell, J. F. (1960) Diffusion of acetylcholine in agar gels and in the isolated rat diaphragm. J. Physiol. 153, 562–572.

    PubMed  CAS  Google Scholar 

  21. Crank, J. (1975) The Mathematics of Diffusion. 2nd ed. Oxford University Press, New York.

    Google Scholar 

  22. Verkman, A. S., and Dix, J. A. (1984) Effect of unstirred layers on binding and reaction kinetics at a membrane surface. Anal. Biochem. 142, 109–116.

    Article  PubMed  CAS  Google Scholar 

  23. Cussler, E. L. (1997) Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, New York.

    Google Scholar 

  24. Bardell, R. L., Weigl, B. H., Kesler, N., Schulte, T.H., Hayenga, J., and Battrell, C. F. Microfluidic Disposables for Cellular and Chemical Detection-CFD Model Results and Fluidic Verification Experiments. SPIE BIOS 2001, San Jose, January 2001.

  25. Winzek, C., and Baumgärtel, H. (1988) Staining kinetics in single cells. Part I. Influence of convective diffusion on the staining rate. Histochemistry 90, 73–77.

    Article  PubMed  CAS  Google Scholar 

  26. Rusakov, D. A., and Kullmann, D. M. (1998) Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl. Acad. Sci. U.S.A. 95, 8975–8980.

    Article  PubMed  CAS  Google Scholar 

  27. Yam, K. L., Anderson, D. K., and Buxbaum, R. E. (1988) Diffusion of small solutes in polymer-containing solutions. Science 241, 330–332.

    Article  PubMed  CAS  Google Scholar 

  28. Kean, E. L. (1968) Rapid, sensitive spectrophotometric method for quantitative determination of sulfatides. J. Lipid Res. 9, 319–327.

    PubMed  CAS  Google Scholar 

  29. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell, Garland Publishing, New York, pp. 478–484.

    Google Scholar 

  30. Madsen, B. W., Beglan, C. L., and Spivak, C. E. (2000) Fluorescein-labeled naloxone binding to mu opioid receptors on live Chinese hamster ovary cells using confocal fluorescent microscopy. J. Neurosci. Methods 97, 123–131.

    Article  PubMed  CAS  Google Scholar 

  31. Emmerson, P. J., Archer, S., El-Hamouly, W., Mansour, A., Akil, H., and Medzihradsky, F. (1997) Synthesis and characterization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled fluorescent ligands for the mu opioid receptor. Biochem. Pharmacol. 54, 1315–1322.

    Article  PubMed  CAS  Google Scholar 

  32. De Meyts, P, Bioanco, A. R., and Roth, J. (1976) Site-site interactions among insulin receptors. J. Biol. Chem. 251, 1877–1888.

    Google Scholar 

  33. Fischel, s. V., and Medzihradsky, F. (1981) Scatchard analysis of opiate receptor binding. Mol. Pharmacol. 20, 269–279.

    PubMed  CAS  Google Scholar 

  34. Pochet, R., and Schmitt, H. (1979) Re-evaluation of the number of specific beta-adrenergic receptors on muscle cells. Nature 277, 58–60.

    Article  PubMed  CAS  Google Scholar 

  35. Loh, H. H., Cho, T. M., Wu, Y. C., and Way, E. L. (1974) Stereospecific binding of narcotics to brain cerebrosides. Life Sci. 14, 2231–2245.

    Article  PubMed  CAS  Google Scholar 

  36. Loh, H. H., Cho, T. M., Wu, Y. C., Harris, R. A., and Way, E. L. (1975) Opiate binding to cerebroside sulfate: a model system for opiate-receptor interaction. Life Sci. 16, 1811–1817.

    Article  PubMed  CAS  Google Scholar 

  37. Cho, T. M., Cho, J. S., and Loh, H. H. (1976) A model for opiate-receptor interactions: mechanism of opiate-cerebroside sulfate interaction. Life Sci. 18, 231–244.

    Article  PubMed  CAS  Google Scholar 

  38. Law, P. Y., Fischer, G., Loh, H. H., and Herz, A. (1979) Inhibition of specific opiate binding to synaptic membrane by cerebroside sulfatase. Biochem. Pharmacol. 28, 2557–2562.

    Article  PubMed  CAS  Google Scholar 

  39. Law, P. Y., Harris, R. A., Loh, H. H., and Way, E. L. (1978) Evidence for the involvement of cerebroside sulfate in opiate receptor binding: studies with Azure A and jimpy mutant mice. J. Pharmacol. Exp. Ther. 207, 458–468.

    PubMed  CAS  Google Scholar 

  40. Craves, F. B., Zalc, B., Leybin, L., Baumann, N., and Loh, H. H. (1980) Antibodies to cerebroside sulfate inhibit the effects of morphine and beta-endorphin. Science 207, 75–76.

    Article  PubMed  CAS  Google Scholar 

  41. Loh, H. H., and Law, P. Y. (1980) The role of membrane lipids in receptor mechanisms. Annu. Rev. Pharmacol. Toxicol. 20, 201–234.

    Article  PubMed  CAS  Google Scholar 

  42. van de Lest, C. H., Versteeg, E. M., Veerkamp, J. H., and van Kuppevelt, T. H. (1994) Quantification and characterization of glycosaminoglycans at the nanogram level by a combined azure A-silver staining in agarose gels. Anal. Biochem. 221, 356–361.

    Article  PubMed  Google Scholar 

  43. Inoue, H., Seyama, Y., and Yamashita, S. (1986) Specific determination of arylsulfatase A activity. Experientia 42, 33–35.

    Article  PubMed  CAS  Google Scholar 

  44. Sarkadi, B., Attisano, L., Grinstein, S., Buchwald, M., and Rothstein, A. (1984) Volume regulation of Chinese hamster ovary cells in anisoosmotic media. Biochim. Biophys. Acta 774, 159–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Spivak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spivak, C.E., Oz, M., Beglan, C.L. et al. Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells. Cell Biochem Biophys 45, 43–58 (2006). https://doi.org/10.1385/CBB:45:1:43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:43

Index Entries

Navigation